
Fibonacci Numbers (Handout January, 2016)

This document summarizes the introduction to Fibonacci numbers presented during

our first week of semester. This quick introduction is intended to highlight some of the

upcoming themes of our course (as these themes are less apparent in the first couple

of chapters of the textbook).

The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, . . . is defined1 recursively

by

Fn =

{
1, if n = 1 or 2;

Fn−1 + Fn−2, if n > 3.

We proceed to describe one of the many settings in which this sequence unexpectedly

appears.

A bit (abbreviation for ‘binary digit ’) is defined to be a symbol ‘0’ or ‘1’. (Note that

we consider bits a symbols, like letters, not as numbers.) By a bitstring (or binary string),

we mean a finite sequence of bits. For each n > 0, there are exactly 2n bitstrings of length

n, where the length of a bitstring is defined to be the number of bits in the string. We

include the case n = 0, which yields the null string ‘’ of length zero. Usually we omit the

quotation marks, abbreviating ‘01101’ as 01101 for example; but for the null string, clearly

such abbreviation won’t work. Here we list explicitly all bitstrings of length 6 3:

n bitstrings of length n

0 ‘’

1 0, 1

2 00, 01, 10, 11

3 000, 001, 010, 011,
100, 101, 110, 111

Our problem is to determine the number of bitstrings of length n having no two consecutive

1’s. Let us call such a bitstring a 11-free bitstring, and denote by an the number of 11-free

bitstrings of length n. The following table shows that the first few terms in the sequence

an look remarkably like Fibonacci numbers:

1 This sequence appears in the exercises to Chapter 8 of the textbook.
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n 11-free bitstrings
of length n

an = number of
such bitstrings

bn = no.
ending in ‘1’

cn = no. not
ending in ‘1’

0 ‘’ 1 0 1

1 0, 1 2 1 1

2 00, 01, 10 3 1 2

3 000, 001, 010, 100, 101 5 2 3

4 0000, 0001, 0010, 0100,
1000, 0101, 1001, 1010 8 3 5

For future reference, I have also indicated how many such bitstrings end (or do not end)

in ‘1’: there are bn and cn such bitstrings respectively, so that an = bn + cn. Based on this

limited evidence, we conjecture (i.e. guess) that an = Fn+2, bn = Fn and cn = Fn+1 for

all n > 0. Let us actually prove this fact:

Theorem. For all n > 0, we have an = Fn+2.

Proof. Every 11-free bitstring of length n + 1 not ending in ‘1’ (call it w) has the form

w = w′0 where w′ is an arbitrary 11-free bitstring of length n; this says that

cn+1 = an = bn + cn.

Every 11-free bitstring w of length n + 1 ending in ‘1’ has the form w = w′1 where w′ is

necessarily a 11-free bitstring of length n not ending in ‘1’; this says that

bn+1 = cn.

Substituting this into the previous formula gives cn+1 = cn + cn−1 for n > 1, which is the

same recurrence formula as that characterizing the Fibonacci sequence. Now it is easy to

complete the formal proof using mathematical induction:

The formula an = Fn+2 holds for n 6 1 as we see from our table. Now suppose that

n > 2; we must show that an = Fn, assuming that ak = Fk+2 for all k ∈ {0, 1, . . . , n−1}.
Using this assumption and our recurrence formula for an,

an = an−1 + an−2 = Fn+1 + Fn = Fn+2

where we have also used the recurrence formula for the Fibonacci sequence. The result

follows by mathematical induction.

Next, we demonstrate that it is possible to obtain a direct formula for Fn (or for

an). Such a formula can be used to evaluate Fn without having to evaluate all of the
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previous terms F0, F1, F2, F3, . . . , Fn−1 first. We accomplish this using a method described

in Chapter 8 of the textbook, where we introduce the generating function of the sequence

Fn as

F (x) =
∑
n>0

Fnx
n = F0 + F1x+ F2x

2 + F3x
3 + F4x

4 + · · ·

= x+ x2 + 2x3 + 3x4 + 5x5 + 8x6 + 13x7 + · · · .

It is important to note that this expression is purely symbolic. Here x is a symbol, not

a number; and F (x) is also purely symbolic. In particular, calling F (x) a function is a

misnomer. We never evaluate F (a) for any number a; and so convergence of the power

series is never an issue. For this reason, none of what you learned about power series in

Calculus II is needed here.

One of the most important power series is the geometric series

1

1− x
=
∑
n>0

xn = 1 + x+ x2 + x3 + x4 + · · · .

The identity is verified by cross-multiplying:

(1− x)(1 + x+ x2 + x3 + x4 + · · ·) = 1− x+ x− x2 + x2 − x3 + x3 − · · ·
= 1.

Here, as always, x and the series expansion for 1
1−x , are purely symbolic. (In Calculus II

you would have been taught that the series is only valid when the series converges, i.e. for

|x| < 1; but in our context it is inappropriate to require such a caveat since x is not a

number, and in particular |x| has no meaning.)

To obtain a closed-form expression for F (x), use the identity Fn = Fn−1 +Fn−2, valid

for all n > 2, thus:

F (x) =
∑
n>0

Fnx
n = x+

∑
n>2

Fnx
n;

F (x)− x =
∑
n>2

Fnx
n

=
∑
n>2

(Fn−1 + Fn−2)xn

=
∑
n>2

Fn−1x
n +

∑
n>2

Fn−2x
n

= x
(
F1x+ F2x

2 + F3x
3 + · · ·

)
+ x2

(
F0 + F1x+ F2x

2 + F3x
3 + · · ·

)
= xF (x) + x2F (x).
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Thus (1− x− x2)F (x) = x, i.e.

F (x) =
x

1− x− x2
.

In order to decompose F (x) into two terms with linear (rather than quadratic) denomina-

tors, we first factor the denominator as

1− x− x2 = (1− αx)(1− βx)

where α and β are the reciprocal roots of the quadratic polynomial (i.e. 1
α and 1

β are the

actual roots of 1 − x − x2). In particular for 1
α to be a root, we require 1 − 1

α −
1
α2 = 0

and so α2 − α− 1 = 0, and similarly β2 − β − 1 = 0. Thus

α, β =
1±
√

5

2
.

It doesn’t matter which root has the ‘+’ sign and which has the ‘−’ sign; we might as well

take

α =
1 +
√

5

2
= 1.618 . . . ; β =

1−
√

5

2
= −0.618 . . . .

For future reference, observe that α − β =
√

5. The decimal approximations for α and β

are not strictly needed here, but they are shown to satisfy our curiosity. Note that α is

the famous irrational number known as the golden ratio. Next, as promised, we split F (x)

into two terms as

F (x) =
x

1− x− x2
=

x

(1− αx)(1− βx)
=

A

1− αx
+

B

1− βx

where A and B are constants. This decomposition, known as the partial fraction de-

composition of F (x), is often introduced in Calculus II as a technique for integrating

rational functions. The fact that such constants A,B exist is a result in linear alge-

bra; and while we do not require any knowledge of calculus, we do require you to know

some linear algebra. In particular the constants A and B are found by solving two linear

equations in two unknowns. Start by multiplying both sides of our formula for F (x) by

1− x− x2 = (1− αx)(1− βx) and cancelling factors where possible to obtain

x = (1− x− x2)F (x) = (1− αx)(1− βx)F (x) = (1− βx)A+ (1− αx)B.

This is an identity of polynomials. Evaluating at x = 1
α (so that the last term vanishes)

yields
1
α =

(
1− β

α

)
A = α−β

α A =
√
5
α A ,
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so that A = 1√
5
; and evaluating similarly at x = 1

β yields

1
β =

(
1− α

β

)
B = β−α

β B = −
√
5
β B

so that B = − 1√
5
. This gives the partial fraction decomposition

F (x) =
x

1− x− x2
=

1√
5

( 1

1− αx
− 1

1− βx

)
.

Using our geometric series expansion, we obtain

F (x) = 1√
5

(
1 + αx+ α2x2 + α3x3 + · · ·

)
− 1√

5

(
1 + βx+ β2x2 + β3x3 + · · ·

)
=
∑
n>0

αn−βn

√
5
xn.

Our closed form expression for the n-th Fibonacci number is obtained by simply reading

off the coefficient of xn:

Fn =
αn − βn√

5
.

Note that for large values of n, the value of βn tends to zero since |β| < 1. A consequence

of this is that

Fn ≈
αn√

5
;

in fact we may obtain Fn from αn
√
5

by simply rounding off to the nearest integer. A

consequence of this formula is the fact that Fn grows at an exponential rate, with the

golden ratio α as the base of the exponential function.

The accompanying MAPLE worksheet demonstrates several aspects of our example.

We recursively determine the first 100 (or 101) terms in the Fibonacci sequence. We then

compare with the power series expansion of F (x). We also test our closed formula for Fn
(both the exact formula, and the approximation αn

√
5

. These computations would not be

possible using a typical hand-held calculator; but MAPLE implements arbitrary-precision

integer arithmetic which makes these computations possible.
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