
Finite Extension Fields

Let F be a field, and F [t] the ring of polynomials in an indeterminate t with coefficients

in F . Let f(t) ∈ F [t] be a polynomial of degree n > 1. Recall that f(t) is reducible in

F [t] if it factors as f(t) = g(t)h(t) where g(t), h(t) ∈ F [t] have degree ∈ {1, 2, . . . , n−1};
otherwise, f(t) is irreducible in F [t] (and we say simply that f(t) is irreducible over F ).

From our prior study of ring theory, we know that the ideal
(
f(t)

)
⊂ F [t] is maximal;

therefore the quotient ring E = F [t]
/(
f(t)

)
is a field. This new field is an extension of

F of degree n; in other words, it is an n-dimensional vector space over F . This extension

field has the form E = F [θ] where θ = t +
(
f(t)

)
is a root of f(t) in E (not in F , unless

n = 1). Formally, we have extended F to a new field E containing a root of f(t). We have

F [θ] = {g(θ) : g(t) ∈ F [t]}.

The notation E = F [θ] reminds us that elements of E are obtained by evaluating polyno-

mials g(t) ∈ F [t] at θ; the evaluation map

F [t]→ F [θ], g(t) 7→ g(θ)

is a ring homomorphism. By the Division Algorithm, every g(t) ∈ F [t] may be uniquely

expressed in the form

g(t) = q(t)f(t) + r(t) where q(t), r(t) ∈ F [t], deg r(t) < n.

Since g(θ) = q(θ)f(θ) + r(θ) = r(θ), we see that only polynomials of degree less than n are

required to construct E:

F [θ] =
{
a0 + a1θ + a2θ

2 + · · ·+ an−1θ
n−1 : a0, a1, . . . , an−1 ∈ F

}
.

One sometimes writes

E = F (θ) =

{
g(θ)

h(θ)
: g(t), h(t) ∈ F [t], h(θ) 6= 0

}
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to indicate that E is a quotient field; but since F [θ] is already closed under division, we

have F (θ) = F [θ] and this extra notation serves only for emphasis1.

Example 1

Suppose that d ∈ F is not a square in F , i.e. the polynomial t2 − d ∈ F [t] is irreducible

over F . Then we obtain an extension field

E = F [
√
d] =

{
a+b
√
d : a, b ∈ F}.

This is a quadratic extension of F , i.e. an extension of degree 2. In odd characteristic,

every quadratic extension has this form.

Example 2

We wish to construct F4 as a quadratic extension of F2. Since every element of F2 is a

square, we cannot use the method of Example 1. The unique irreducible polynomial of

degree 2 over F2 is given by f(t) = t2 + t+ 1. Denote by θ a root of f(t); then

F4 = F2[θ] = {0, 1, θ, θ+1}

where θ2 = θ + 1.

Example 3

An algebraic number field is a finite extension of Q, i.e. an extension of the form Q(θ) ⊇ Q
where θ is algebraic over Q. For example, consider the polynomial

f(t) = t3 + t2 − 3t− 1 ∈ Q[t].

This polynomial is irreducible over Q by the Rational Root Theorem (check that ±1 are

not roots of f(t)). Now f(t) has a root in the cubic extension field

Q[θ] =
{
a+bθ+cθ2 : a, b, c ∈ Q

}
1 By contrast, the element π ∈R is not a root of any nonzero polynomial in Q[t]; so Q[π] 6= Q(π). In this

case Q[π] is a subring of R and Q(π) is its field of quotients: Q[π]⊂Q(π)⊂R.
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where
θ3 = −θ2 + 3θ + 1;

θ4 = −θ3 + 3θ2 + θ

= (θ2 − 3θ − 1) + 3θ2 + θ

= 4θ2 − 2θ − 1;

etc. For example, consider the elements α, β ∈ Q[θ] given by

α = 2θ2 + θ − 3; β = θ2 − 5θ − 2.

We have
α+ β = 3θ2 − 4θ − 5;

αβ = (2θ2 + θ − 3)(θ2 − 5θ − 2)

= 2θ4 − 9θ3 − 12θ2 + 13θ + 6

= 2(4θ2−2θ−1)− 9(−θ2+3θ+1)− 12θ2 + 13θ + 6

= 5θ2 − 18θ − 5.

Inverses of elements in Q[θ] may sometimes be found by inspection, e.g. dividing both sides

of

1 = θ3 + θ2 − 3θ

by θ gives
1

θ
= θ2 + θ − 3.

But for more general cases, we may use the extended Euclidean algorithm, in just the

same way as in the finite field Fp. For example let us compute α/β for the values of

α, β ∈ Q[θ] chosen above. We first find 1/β using the extended Euclidean Algorithm.

Since β = g(θ) 6= 0 where g(t) = t2 − 5t − 2 and f(t) is irreducible, g(t) is not divisible

by f(t) and gcd(f(t), g(t)) = 1. We therefore find polynomials u(t), v(t) ∈ Q[t] such that

u(t)f(t) + v(t)g(t) = 1, using elementary row operations:

f(t) g(t)

1 0 t3 + t2 − 3t− 1

0 1 t2 − 5t− 2

1 −t− 6 29t+ 11
156
841 −

1
29 t

1
29 t

2 + 18
841 t−

95
841

34
841

− 29
34 t+ 78

17
29
34 t

2 + 9
17 t−

95
34 1

The last row expresses the desired relation(
− 29

34 t+ 78
17

)
f(t) +

(
29
34 t

2 + 9
17 t−

95
34

)
g(t) = 1.
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Evaluating at θ and using the defining relation f(θ) = 0 gives

1/β = 29
34θ

2 + 9
17θ −

95
34 .

Finally,
α/β =

(
2θ2 + θ − 3

)(
29
34θ

2 + 9
17θ −

95
34

)
= 29

17θ
4 + 65

34θ
3 − 259

34 θ
2 − 149

34 θ + 285
34

= 29
17

(
4θ2−2θ−1

)
+ 65

34

(
−θ2+3θ+1

)
− 259

34 θ
2 − 149

34 θ + 285
34

= − 46
17θ

2 − 35
17θ + 146

17 .

Let us check these results using Maple:
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Algebraic and Transcendental Elements

Now let E ⊇ F be an extension of fields, and let θ ∈ E. Consider the ‘evaluation map’

F [t]→ E, g(t) 7→ g(θ).

This is clearly a ring homomorphism; and by definition, its image is the subring

F [θ] = {g(θ) : g(t) ∈ F [t]} ⊆ E.

The kernel of the evaluation map is an ideal in the polynomial ring F [t]. However, F [t] is

a principal ideal ring (i.e. every ideal is principal) so by the First Isomorphism Theorem

for Rings,

F [t]/
(
f(t)

) ∼= F [θ] ⊆ E

where every g(t) ∈ F [t] satisfies

g(θ) = 0 ⇐⇒ f(t)
∣∣ g(t) ⇐⇒ g(t) = m(t)f(t) for some m(t) ∈ F (t).

The principal ideal
(
f(t)

)
generated by f(t) is the set of all multiples of f(t); this is the

set of all polynomials having θ as a root. We have two cases:

Case (i): f(t) = 0. This says that θ is not a root of any nonzero polynomial g(t) ∈ F [t]; we

say that θ is transcendental over F . (It may be shown, for example, that the well-known

constants π, e ∈ R are transcendental over Q. I will distribute a handout containing proofs

of these facts, although we won’t cover all details in class.) In this case our isomorphism

reduces to

F ⊂ F [θ] ⊂ E and F [θ] ∼= F [t].

Note that F [θ] ∼= F [t] is a ring but not a field; this is why each of the containments in

F ⊂ F [θ] ⊂ E is proper. In fact, F [θ] ∼= F [t] is an integral domain and its field of quotients

is the subfield F (θ). So we have

F ⊂ F [θ] ⊂ F (θ) ⊂ E.

Case (ii): f(t) has degree n > 1. We may assume f(t) is monic; otherwise divide f(t) by

its leading coefficient. In this case we say θ is algebraic of degree n over F , and f(t) is the

minimal polynomial of θ over F . By the Division Algorithm,

F [t]/
(
f(t)

) ∼= F [θ] = {a0+a1θ+a2θ
2+ · · ·+an−1θ

n−1 : ai ∈ F} ⊆ E.
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In this case F [θ] is actually a subfield of E, and we have a tower of extension fields

F ⊆ F [θ] = F (θ) ⊆ E.

Here [F [θ] : F ] = n since {1, θ, θ2, . . . , θn−1} is a basis for F [θ] over F .

The arguments above require that we recognize when a polynomial is irreducible. For

a polynomial f(t) of degree n over a finite field F , this can be done by simply enumerating

reducible polynomials of degree n, of which there is certainly only a finite number. Moreover

for an arbitrary ground field F , if n ∈ {2, 3} then it suffices to check that f(t) ∈ F [t] has

no roots in F . It is helpful to have more general techniques for verifying irreducibility of

f(t). The following is very helpful when working over the ground field Q:

Theorem. Let f(t) ∈ Z[t]. If f(t) is irreducible over Z, then f(t) is irreducible

over Q.

This is a standard result from ring theory1.

Example 4

Consider α =
√

2+
√

3 ∈ R. It is easy to check that α is a root of f(t) = t4−10t2+1 ∈ Q[t].

To show that this is the minimal polynomial of α over Q, we must show that it is irreducible

over Q. If not, then it is reducible over Z, and we have either

(i) f(t) = (t± 1)(t3 + at2 + bt± 1) where a, b ∈ Z, or

(ii) f(t) = (t2 + at± 1)(t2 + bt± 1) where a, b ∈ Z.

Case (i) cannot occur since neither 1 nor −1 is a root of f(t). In case (ii) we must have

b = −a and −a2±2 = 10, which has no integer solutions. We deduce that f(t) is irreducible

over Q, and hence f(t) is the minimal polynomial of α.

Observe the factorization

f(t) =
(
t−
√

2−
√

3
)(
t−
√

2 +
√

3
)(
t+
√

2−
√

3
)(
t+
√

2 +
√

3
)

in R[t]. We have a tower of fields

Q ⊆ Q[
√

2] ⊆ Q[α]

1 See e.g. Theorem 4.18 of Hungerford, Abstract Algebra: An Introduction; or
http://www/uwyo.edu/moorhouse/handouts/algebra.pdf p.67.
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of degree [Q[α] : Q] = 4. However, [Q[
√

2] : Q] = 2 since t2 − 2 is the minimal polynomial

of
√

2 over Q. (This follows from the fact that t2 − 2 is irreducible over Q, and has
√

2

as a root; it can also be deduced from the classical fact that
√

2 is irrational.) By the

transitivity of degrees, we deduce that [Q[α] : Q[
√

2]] = 2. In particular, α /∈ Q[
√

2], which

implies that
√

3 /∈ Q[
√

2]; this is stronger than the fact that
√

3 is irrational. Similarly,√
2 /∈ Q[

√
3].

Example 5

This example yields a proof that an arbitrary angle cannot be trisected using a straightedge

and compass. Define ζ ∈ C by

ζ = e2πi/9 = cos
(
2π
9

)
+ i sin

(
2π
9

)
;

ζ−1 = ζ = e−2πi/9 = cos
(
2π
9

)
− i sin

(
2π
9

)
.

We have

0 = ζ9 − 1 = (ζ3 − 1)(ζ6 + ζ3 + 1)

and since ζ3 = e2πi/3 6= 1, it follows that

ζ6 + ζ3 + 1 = 0.

Now consider

α = ζ + ζ−1 = ζ + ζ = 2 cos
(
2π
9

)
∈ R;

then
α3 − 3α+ 1 =

(
ζ + ζ−1

)3 − 3
(
ζ + ζ−1

)
+ 1

=
(
ζ3 + 3ζ + 3ζ−1 + ζ−3

)
− 3ζ − 3ζ−1 + 1

= ζ3 + ζ−3 + 1

= ζ6 + ζ3 + 1

= 0.

We claim that the polynomial f(t) = t3 − 3t+ 1 ∈ Z[t] is irreducible over Q. If not, then

it is reducible over Z and

f(t) = (t± 1)(t2 + at± 1)

for some a ∈ Z; but since neither 1 nor −1 is a root of f(t) = t3−3t+1, this is impossible.

Therefore f(t) is the minimal polynomial of α = 2 cos 2π
9 over Q, and

[Q[α] : Q] = 3.
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Suppose we are given an initial configuration of labeled points, line segments and

circular arcs in R2. Each labeled points in this initial configuration have all been identified

as a point of intersection of two lines, or of two arcs, or of a line and an arc. Starting from

this initial configuration of points and lines, we proceed to use straightedge and compass

to construct new points, lines and arcs using straightedge and compass by a sequence of

steps. Legal steps are as follows:

(A) Join two previously labeled points to form a line (or a segment thereof).

(B) Using three previously labeled points P,Q,R, construct the circle (or arc thereof)

with center P having QR as radius.

(C) Intersect two previously constructed lines to form a new labeled point.

(D) Intersect two previously constructed circular arcs to form a new labeled point.

(E) Intersect a line and a circular arc (previously constructed) to form a new labeled

point.

Denote by F ⊇ Q the extension field generated by

• the coordinates of the points,

• the slopes and intercepts of the lines, and

• the radii of the circles

in the initial configuration. After n steps we obtain a tower of fields

F = F0 ⊆ F1 ⊆ F2 ⊆ · · · ⊆ Fn

where Fn ⊇ Q is the extension field generated by the coordinates of the points, the slopes

and intercepts of the lines, and the radii of the circles after n steps. It is not hard to see

that [Fk : Fk−1] = 1 or 2 for each k ∈ {1, 2, . . . , n}. Indeed, steps of type (A), (B) and (C)

do not increase the coordinate field at all, so that [Fk : Fk−1] = 1. Steps of type (D) and

(E) yield new points whose coordinates are roots of a quadratic equation with coefficients

in Fk−1, so that [Fk : Fk−1] 6 2. The claim follows. Now by the transitivity of degrees for

field extensions, we conclude that [Fn : F ] is a power of 2.

It is well known that the angle 2π
3 = 120◦ is constructible. If an arbitrary angle can

be trisected using a straightedge and compass, then an angle 2π
9 = 40◦ is constructible

using a straightedge and compass. We will show that this is impossible:

We may assume that the circle x2 + y2 = 1 and the x and y axes are given, so we are

starting with F = Q. If, after a finite number of steps, we have constructed a line through

(0, 0) having a 40◦ angle with respect to the x-axis, then by intersecting this line with the

unit circle gives us the point
(
cos 2π

9 , sin
2π
9

)
. Thus after n steps we have α ∈ Fn and

Q ⊆ Q[α] ⊆ Fn.

By transitivity of degrees, [Q[α] : Q] = 3 must divide [Fn : Q]. However, [Fn : Q] is a

power of 2, a contradiction.
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