
 

 

Error-Correcting Codes:  An Application of Geometry 
 

Information is stored and exchanged in the form of streams of characters from some 

alphabet.  An alphabet is a finite set of symbols, such as the lower-case Roman 

alphabet {a,b,c,…,z}.  Larger digits may be formed by including the upper-case 

Roman letters, punctuation marks, the digits 0 through 9, and possibly other symbols 

such as ‘$’, ‘%’, etc.  In the other extreme, we may choose the simplest possible 

alphabet, the binary alphabet {0,1}.  We prefer the binary alphabet for several 

reasons: 
 

1. its ease of implementation as the on/off state of an electric circuit, the 

North/South polarization of positions on a magnetic tape or disk, etc.; 

2. the fact that letters of any alphabet can be easily represented as strings of 0’s 

and 1’s; and 

3. access to powerful algebraic tools for encoding and decoding. 
 

Strings of letters from our chosen alphabet are called words or, when the binary 

alphabet is in use, bitstrings. 
 

All such information is subject to corruption due to imperfect storage media (dust, 

scratches or manufacturing defects on optical CD’s; demagnetizing influences on 

magnetic tape or disks) or noisy transmission channels (electromagnetic static in 

telephone lines or atmosphere).  A bit error occurs when a 0 is changed to a 1, or a 1 

to a 0, due to such influences.  The goal of error-correcting codes is to protect 

information against such errors.  Thanks to error-correcting codes, we can expect 

that a copy of a copy of a copy of a copy of an audio CD will sound exactly like the 

original when played back (at least 99.999% of the time); or that a large binary file 

downloaded off the internet will be a perfect copy of the original (again, 99.999% of 

the time). 
 

What makes such recovery of the original binary file possible?  Roughly, an error-

correcting code adds redundancy to a message.  Without this added redundancy, no 

error-correction would be possible.  The trick, however, is to add as little 

redundancy as necessary, since longer messages are more costly to transmit.  

Finding the optimal balance between achieving a high error-correction and keeping 

the size of the encoded message as small as possible (i.e. achieving a high 
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information rate, to be defined later) is one of the prime concerns of coding theory.  

(Note that our codes are used to protect information from alteration due to faulty 

transmission or storage/retrieval; not to secure information from unauthorized 

access.)  These concepts are best explained through examples. 
 

Suppose we wish to send a bitstring of length 4, i.e. one of the sixteen possible 

message words 0000, 0001, 0010, 0011, …, 1111.  We refer to these sixteen strings 

as message words, and the (If a message were more than 4 bits in length, it could be 

divided into blocks of 4 bits each, which could then be encoded and sent 

individually.)  Note that these bitstrings are the binary representations of the integers 

0, 1, 2, …, 15; they also correspond to the hexadecimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, 

9, A, B, C, D, E, F. 
 

Scheme 1:  “As is” 
 

One possibility is that we send each bitstring “as is”: for example, the message 1011 

would be sent as 1011.  This scheme does not allow for any error correction, and so 

it is only practical for a noiseless channel. 
 

Scheme 2:  Parity Check Bit 
 

As a second example, consider appending a parity check bit to the end of each 

message word.  This last bit is chosen so that each codeword has an even number of 

1’s.  For example, the message 1011 would be encoded as 10111; the message 0110 

would be encoded as 01100; see Table A.  This parity check bit allows for the 

detection of a single bit error during transmission; however this error cannot be 

corrected. 

For example, if the word 10111 is received, this would be accepted as a valid 

codeword and would be decoded as 1011.  If the word 11010 is received, no 

decoding is possible and this word would be rejected.  In practice the receiver would 

ask the sender to resend the message if possible. 

 

Scheme 3:  A 3-Repetition Code 
 

In order to allow for correction of up to one bit error, we consider the possibility of 

sending each bit three times.  Under this scheme, the message word 0100 would be 

encoded as the codeword 000111000000 of length 12.  Suppose this word is 

transmitted and that, due to a single bit error during transmission, the word 

000111001000 is received.  Each triple of bits is decoded according to a ‘majority 

rules’ principle, thus 000 yields 0; 111 yields 1; 001 yields 0; and 000 yields 0, so 
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the original message word 0100 is recovered despite the bit error introduced during 

transmission. 

 

Table A:  Four Schemes for Encoding of 4-bit Message Words 
 

 

Msg. 

No. 

Message 

Text 

Scheme 1 

(“As Is”) 

Codeword 

Scheme 2 

(Parity Check) 

Codeword 

Scheme 3 

(3-Repetition) 

Codeword 

Scheme 4 

(Hamming) 

Codeword 

0 0000 0000 00000 000000000000 0000000 

1 0001 0001 00011 000000000111 0001101 

2 0010 0010 00101 000000111000 0010111 

3 0011 0011 00110 000000111111 0011010 

4 0100 0100 01001 000111000000 0100011 

5 0101 0101 01010 000111000111 0101110 

6 0110 0110 01100 000111111000 0110100 

7 0111 0111 01111 000111111111 0111001 

8 1000 1000 10001 111000000000 1000110 

9 1001 1001 10010 111000000111 1001011 

10 1010 1010 10100 111000111000 1010001 

11 1011 1011 10111 111000111111 1011100 

12 1100 1100 11000 111111000000 1100101 

13 1101 1101 11011 111111000111 1101000 

14 1110 1110 11101 111111111000 1110010 

15 1111 1111 11110 111111111111 1111111 

 

 

Scheme 4:  The Hamming Code 
 

Finally we consider a scheme that corrects errors, yet is more efficient than the 

repetition code.  In this scheme every 4-bit message word is encoded as a 7-bit 

codeword according to Table A.  Note that we have simply appended three bits to 

every message word; the rule for choosing these bits is more complicated than the 
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rule used in Scheme 2 but will be revealed later.  Under this 

scheme, the codeword for message 1011 is 1011100.  Suppose 

this word suffers from a single bit error transmission, and is 

received as 1011110, say.  This word will be safely 

recognized as 1011100 (and decoded as 1011) since all other 

Hamming codewords differ from 1011110 in at least two 

positions.  The 

property of the 

Hamming code 

which guarantees 

unique decodability 

with at most one bit 

error, is that any two Hamming codewords 

differ from in each other in at least three 

positions.  This code was discovered by 

Richard Hamming, a pioneer in the theory 

of error-correcting codes who was 

primarily interested in their application to 

early electronic computers for achieving 

fault-tolerant computation. 
 

This code, like the 3-repetition code, 

allows for single bit errors to be corrected; 

yet it is superior in that it requires the 

transmission of only 7 bits (rather than 12 

bits) for every 4 bits of actual information. 

 

The Hamming code is constructed from the 

projective plane of order two, as follows.  

The seven lines of the plane give rise to 

fourteen of the Hamming codewords; for 

example the line {1,2,4} yields the 

codeword 1101000 with 1’s in the 1st, 2nd 

and 4th positions; also the codeword 0010111, with 0’s in the 1st, 2nd and 4th 

positions.  The remaining two codewords are simply 0000000 and 1111111.  This 

makes up all sixteen codewords. 
 

 

It is apparent that the construction of efficient codes is a geometric problem: one 

seeks a large number of points (‘codewords’) in a higher-dimensional space, such 

Richard Hamming 

1915–1998 



 5 

that any two of these points are far apart.  In particular the construction of good 

codes is related to the problem of constructing efficient packings of spheres in 

higher-dimensional space. 

 

Sphere Packing 
 

It has long been recognized that the densest possible packing of disks of equal area 

in the plane, is the packing seen in Figure B: 

 

 

 

 

 

 

 

 

 

 

 

 

We require that the disks do not overlap, and we want to fill as many as possible into 

a given large plane region.  There is a similar familiar lattice packing of equal-sized 

balls in 3 dimensions, shown in Figure C: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It was shown only recently (by Thomas Hales, in 1997) that this packing is in fact 

the densest possible packing of space by equal-sized balls.  For every n = 1, 2, 3, …, 

Figure A: 

Loosely packed pennies 

Figure B: 

Densely packed pennies 

Figure C: 

Lattice packing 

in 3 dimensions 
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we may ask what is the densest possible packing of equal-

sized balls in Euclidean space of n dimensions.  For n > 3 this 

problem is open, but the problem is intimately related to the 

problem of constructing good error-correcting codes. 

 

We explain the connection between sphere-packing and 

construction of good codes, using the Hamming code of 

length 7 as an example.  In this case we may view the 

codewords as points in a 7-dimensional space, albeit a 

discrete space with coordinates 0,1 rather than real number 

coordinates (so that this space has only 27=128 points in all).  

Note that points in this space are the same as vectors, or 

bitstrings, of length 7.  Any two distinct Hamming codewords 

differ in at least three positions (in fact, the number of coordinates in which they 

differ is always 3, 4 or 7).  It is this property of the Hamming code that guarantees 

that single bit errors are correctible.  Heuristically, the fact that the codewords are far 

apart means that they are not easily confused with each other. 

 

 The Hamming code described above is the consequence of a 

surprisingly dense packing of balls in 8-dimensional Euclidean 

space.  To construct this packing, first add a parity check to each 

of the Hamming codewords from Table A, to obtain bitstrings of 

length 8, each having an even number of 1’s.  This gives the list 

of bitstrings in the table at the right.  Now consider all the points 

(x1, x2, x3, x4, x5, x6, x7, x8) having integer coordinates xi , such that 

the pattern of even and odd coordinates conforms to the table at 

the right (0 = even, 1 = odd).  For example, the point (2,−1, 0, 6, 

−8, 3,−5, 7) is such a vector (with pattern of even and odd given 

by 01000111).  We then take these points as the centers of spheres 

in Euclidean 8-space, of radius 1.  This gives the densest packing 

of spheres known in eight dimensional Euclidean space.  In this 

arrangement, every sphere touches exactly 240 others!  (Compare 

this with the packings in 2 and 3 dimensions, in which each 

sphere touches exactly 6 or 12 others, respectively.) 

00000000 

00011011 

00101110 

00110101 

01000111 

01011100 

01101001 

01110010 

10001101 

10010110 

10100011 

10111000 

11001010 

11010001 

11100100 

11111111 
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