
Equiangular Lines
(Handout April 25, 2007)

Consider a set {�1, �2, . . . , �k} consisting of distinct lines passing through a common
point, say the origin, in R

n. We call this a set of equiangular lines if the angle between �i

and �j is the same for all choices of i �= j. (Note that the angle between two intersecting
lines is always ≤ 90◦.) The problem is: for a given dimension n, what is the maximum
size k for a set of equiangular lines? In R

2, it is not hard to find three such lines:
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We might believe that 3 is the maximum possible number of equiangular lines in R
2, but

how would we prove this?
In class we demonstrated the existence of six equiangular lines, formed by joining

pairs of opposite vertices of the icosahedron:

In this example, the common angle between the lines is θ = cos−1
(

1√
5

) .= 63.4◦. Once
again, the question arises as to whether 6 is the largest possible size for a set of equiangular
lines in R

3. In higher dimensions this question is of great interest to some people in
graph theory and combinatorics, because of its relationship to other structures. You may
recognize that the problem makes sense for any n. Indeed, if u and u′ are unit vectors in
R

n, then u · u′ = ||u|| ||u′|| cos θ = cos θ, where θ is the angle between u and u′. (Although
u and u′ are in Euclidean space of possibly large dimension, nevertheless u and u′ lie in
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a plane, and the angle has the usual geometric meaning within this plane.) The angle
between the lines spanned by u and u′ is either θ or π−θ, whichever is acute (or a right
angle). Since cos(π−θ) = − cos θ, we have

cos2(π−θ) = cos2 θ = (u · u′)2

an expression which depends only on the angle between the two lines (which is either θ or
π−θ).
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The assertion that the maximum number of equiangular lines in R
1, R

2 or R
3 is 1, 3

or 6 respectively, is a consequence of the following.

Theorem 1. A set of equiangular lines in R
n has size at most

(
n+1

2

)
.

This theorem was reported by Lemmens and Seidel (1973) where the result is attributed
to Gerzon. Here we present a much simpler proof, due to Koornwinder (1976), using
polynomials.

We first point out that the appearance of the numbers 1, 3, 6, . . . in this context is
explained by the following. A homogeneous polynomial of degree d is by definition a poly-
nomial all of whose terms have degree d. Homogeneous polynomials of degree 2 have the
form

f(X) = a1X
2;

f(X,Y ) = a1X
2 + a2XY + a3Y

2;

f(X,Y,Z) = a1X
2 + a2Y

2 + a3Z
2 + a4XY + a5XZ + a6Y Z

for 1, 2 or 3 variables respectively. This says that the vector space consisting of all homo-
geneous polynomials of degree 2 in 1, 2 or 3 variables has dimension 1, 3 or 6 respectively.
Later we will give a general formula for the dimension of the vector space of all polyno-
mials, or all homogeneous polynomials, of each degree. First we indicate how to prove
Theorem 1, at least in the case n = 3. (The general case is no harder, using the formula
for the dimension of the vector space of all homogeneous polynomials that we will give
later.)

Suppose {�1, �2, . . . , �k} is a set of equiangular lines in R
3. Choose a unit vector ui in

the direction of each �i. Thus ui · ui = 1 and ui · uj = ±α for all i �= j, where α = cos θ

and θ is the common angle of the set of equiangular lines. For each i, define
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fi(X,Y,Z) =
(
ui · (X,Y,Z)

)2 − α2||(X,Y,Z)||2 ,

which is a homogeneous polynomial of degree 2 in X,Y,Z. (Note: (X,Y,Z) = Xi+Y j+Zk
are two notations for the vector in R

3 from the origin to the point (X,Y,Z).) Note that

fi(ui) = (ui · ui)2 − α2||ui||2 = 1− α2 = sin2 θ �= 0;

fj(ui) = (ui · uj)2 − α2||uj ||2 = α2 − α2 = 0

whenever i �= j. Now it is easy to see that f1, f2, . . . , fk are linearly independent. Suppose
that

c1f1(X,Y,Z) + c2f2(X,Y,Z) + · · ·+ ckfk(X,Y,Z) = 0.

By definition, this means that every coefficient on the left hand side is zero. Evaluating
both sides at ui, the only term that survives is the i-th term, and we get ci(1 − α2) = 0.
Thus ci = 0 for i = 1, 2, . . . , k. We have shown that f1, f2, . . . , fk are linearly independent.
However, these polynomials all belong to the space of homogeneous polynomials of degree 2
in X,Y,Z:

f1, f2, . . . , fk ∈
{
a1X

2 + a2Y
2 + a3Z

2 + a4XY + a5XZ + a6Y Z : a1, . . . , a6 ∈ R
}

.

Since the latter vector space has dimension 6, any linearly independent subset has size at
most 6. Thus k ≤ 6.

The above theorem leaves several questions unanswered. For example, it does not say
there exist

(
n+1

2

)
equiangular lines in R

n; it only says there cannot be more than this
many equiangular lines. For example in R

4, the maximum size of a set of equiangular
lines is 6, as proven by Haantjes (1948). This is less than the upper bound of

(
4+1
2

)
= 10.

Moreover, the theorem does not say that there is only one possible arrangement of three
equiangular lines in R

2, or of six equiangular lines in R
3.

Finally, let us explain the formula for the upper bound appearing in Theorem 1. This
arises from the following more general result:

Lemma 2. The number of monomials of degree d in X0,X1,X2, . . . ,Xn equals(
n+d

n

)
. This also equals the number of monomials of degree at most d in X1,X2, . . . ,Xn .

Recall that the binomial coefficient
(

n
k

)
(‘n choose k ’), defined by(

n

k

)
=

n!
k!(n− k)!

=
n(n− 1)(n − 2) · · · (n − k + 1)

k(k − 1)(k − 2) · · · 2 · 1 ,

equals the number of ways of choosing k objects from n objects. Thus the number of
vectors of length 5 having two 0’s and three 1’s equals

(
5
2

)
= 10 (since each such vector

3



corresponds to a choice of 2 out of 5 positions to place the 0’s); it also equals
(

5
3

)
= 10

(since one may alternatively choose of 3 out of 5 positions to place the 1’s). More generally,
it is easy to see that

(
n
k

)
=

(
n

n−k

)
.

The one-to-one correspondences illustrated by:

1 ←→ X3 ←→
Y ←→ X2Y ←→
Y 2 ←→ XY 2 ←→
Y 3 ←→ Y 3 ←→
Z ←→ X2Z ←→

Y Z ←→ XY Z ←→
Y 2Z ←→ Y 2Z ←→
Z2 ←→ XZ2 ←→

Y Z2 ←→ Y Z2 ←→
Z3 ←→ Z3 ←→

show that there are precisely
(

2+3
2

)
monomials of degree 3 in X, Y and Z, and the same

number of monomials of degree at most 3 in Y and Z. The first correspondence is defined
by Y jZk ↔ XiY jZk where i = 3− j−k. Each monomial XiY jZk of degree 3 corresponds
to a sequence of five squares consisting of i hollow squares, then a solid square, followed
by j hollow squares and another solid squares, and finally by k hollow squares.

A proof of Lemma 2 in the general case follows from the following more general one-
to-one correspondences, which generalize the example above:

⎧⎨
⎩

monomials
Xe1

1 Xe2

2 · · ·Xen
n ,

e1 + e2 + · · ·+ en ≤ d

⎫⎬
⎭←→

⎧⎪⎨
⎪⎩

monomials
Xe0

0 Xe1
1 Xe2

2 · · ·Xen
n ,

e0 + e1 + e2 +
· · · + en = d

⎫⎪⎬
⎪⎭←→

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sequences of
n hollow
squares ‘ ’
and d solid
squares ‘ ’

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

given by Xe1
1 Xe2

2 · · ·Xen
n ↔ Xe0

0 Xe1
1 Xe2

2 · · ·Xen
n for any nonnegative integers e1, e2, . . . , en

whose sum is d; these both correspond to the sequence of n+d squares consisting of e0

hollow squares, then a solid square, then e1 hollow squares, then another solid square, . . . ,
then a solid square, then en hollow squares. The number of such sequences of squares is(

n+d
d

)
.

By Lemma 2 we can now see the dimension of the vector space of polynomials of
degree ≤ d in an arbitrary number of variables. We can also see the dimension of a space
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of homogeneous polynomials in any number of variables. Every polynomial can be split
up into its homogeneous parts; for example, we may write

f(X,Y,Z) = 13X3 + 4X2 + X − 17Y 3 + 11Y 2 + 2XY 2 − 3XY − 5

= (−5) + (X) + (4X2−3XY +11Y 2) + (13X3+2XY 2−17Y 3) ,

where the parts in parentheses are the homogeneous parts of degree 0, 1, 2 and 3, respec-
tively.

Theorem 3. (i) The vector space consisting of polynomials of degree ≤ d in n

indeterminates, has dimension
(

n+d
d

)
.

(ii) The subspace consisting of homogeneous polynomials of degree d in n indetermi-
nates, has dimension

(
n−1+d

d

)
.

The proof of Theorem 3 follows directly from Lemma 2; however, note that we replaced
n + 1 by n to obtain part (ii) from Lemma 2.
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