
 
 

Encoding and Decoding with the Hamming Code 
 
The one shortfall of our previous presentation of the Hamming code is the apparent need to look 
up codewords in a long list.  We will soon see that the encoding and decoding can be done much 
more efficiently than this, using some simple linear algebra.  This is significant since if error-
correcting codes are to be useful, they should not only allow for error correction in principle, as 
well as having codewords as short as possible; they should also have simple encoding and 
decoding algorithms.  This means that it should be possible for simple electronic circuits, 
implemented on silicon chips perhaps, to perform the encoding and decoding easily and in ‘real 
time’. 
 

Matrix Multiplication 
 
The linear algebra we need to understand the encoding and decoding processes involves matrices.  
An m×n matrix is simply an array of numbers, having m rows and n columns, usually enclosed in 
brackets or parentheses; thus for example 
 

 
 

is a 2×3 matrix.  It has six entries 3, 4, …, 0  which are located by row and column number; for 
example the (1,3)-entry of A is −2. 
 
How do we multiply two matrices?  Consider a 3×2 matrix 
 

 
 

The product of these two matrices is the 2×2 matrix 
 

 
 

Note that the (i,j)-entry of AB is the dot product of the ith row of A with the jth row of B; for 
example the (2,1)-entry of AB is  2×2 + (−1)×(−1) + 0×5 = 3.  Note however that the product BA is 
different from AB: 
 

 



 
The product of an m×n matrix with an n×p matrix, will always give an m×p matrix.  Each entry 
will be found by taking the dot product of two vectors of length n.  The product of two matrices is 
not defined unless the number of columns in the first matrix, equals the number of rows in the 
second matrix.  Although matrix multiplication is not commutative in general (we have seen an 
example where AB ≠ BA), it is always associative:  (AB)C = A(BC)  whenever the matrix products 
are defined (i.e. the number of columns of A equals the number of rows of B, and the number of 
columns of B equals the number of rows of C). 
 

The (Revised) Projective Plane and Hamming Code 
 
Here is a revised description of the projective plane of order 
two.  We have given up the ‘cyclic shift’ description of l
(the evident pattern of lines {1,2,4}, {2,3,5}, {3,4,6}, etc. in
the previous version).  The present revised version allows 
for a simplified decoding algorithm using syndrom
describe below. 
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Once again the Hamming code is constructed from the 
projective plane; for example the line {3,5,6} gives rise to 
the codewords 0010110 and 1101001.  The revised 
Hamming code is listed below: 
 
 
 

Table B:  The Revised Hamming Code 
 

Msg. 
No. 

Message 
Text 

Revised Hamming 
Codeword 

8 1000 1000011 

9 1001 1001100 

10 1010 1010101 

11 1011 1011010 

12 1100 1100110 

13 1101 1101001 

14 1110 1110000 

15 1111 1111111 

Msg. 
No. 

Message 
Text 

Revised Hamming 
Codeword 

0 0000 0000000 

1 0001 0001111 

2 0010 0010110 

3 0011 0011001 

4 0100 0100101 

5 0101 0101010 

6 0110 0110011 

7 0111 0111100 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Hamming Encoding and Decoding using Matrices 
 
Encoding and decoding with the Hamming code is accomplished using matrix multiplication 
modulo 2: here the only constants are 0 and 1, using the addition and multiplication tables supplied 
here: 
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 + 0 1
0 0 1
1 1 0

× 0 1
0 0 0
1 0 1

 
 
 
 
 
For encoding we use the 4×7 matrix 
 

 
 

A message word x of length 4 may be considered as a vector of length 4, or equivalently, a 1×4 
matrix.  The codeword corresponding to x is then simply xG, which is a 1×7 matrix, or simply a 
bitstring of length 7.  For example the message  x = 1101  is encoded as 
 

 
 

Note that this gives the same answer as our table, namely 1101001, for the codeword 
corresponding to the message word 1101.  The point is that matrix multiplication is easier to 
implement in an electronic circuit, and requires less real time to implement, than lookup in a list 
such as Table B.  Moreover this gives us insight into the structure of the Hamming code, using the 
tools of linear algebra. 
 
How can we efficiently decode?  If a word y of length 7 is received, we anticipate first checking to 
see if y is a codeword; if so, the original message is recovered as the first 4 bits of y.  But how do 
we check to see if y is in the code without performing a cost-intensive search through Table B?  
Our answer uses the 3×7 check matrix 
 

 
 

Consider the Hamming codeword 1101001, which we denote by y, thus: 
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Note that we have written y as a column vector (i.e. as a 7×1 matrix) rather than as a row vector 
(i.e. a 1×7 matrix).  Now the matrix product 

 
 

gives the zero vector, which is our evidence that y is a valid codeword, and so we take its first four 
characters 1101 to recover the original message word. 
 
What if y had suffered from a single bit error during transmission?  Suppose that its third bit had 
been altered, so that instead of y, we receive the word 
 

 
 

The bit error would be detected by computing the matrix product 
 

 
 

Since the result is not the zero vector, this alerts us to the fact that y′ is not a valid codeword.  This 
alerts us to the presence of a bit error, and we assume that only one bit error occurred during 
transmission.  But how can we tell which of the seven bits of y′ is in error?  Simply: the vector 
above is the word 011, which is the binary representation of the number 3; this tells us that the 
third bit of y′ is erroneous.  Switching it recovers the valid codeword 1101001, then taking the first 
four bits recovers the codeword 1101. 
 
The vector Hy is called the syndrome (or error syndrome) of the vector y.  If the syndrome is zero, 
then y is a codeword; otherwise the syndrome represents one of the integers 1,2,…,7 in binary, and 
this tells us which of the seven bits of y to switch to recover a valid Hamming codeword from y. 
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