UNIVERSITY

= . Math 4550—Spring 2024 Department of
OF WYOMING & » =% Mathematics

Number Theory P

Dirichlet Series

You should be very familiar with the following fact from Calculus II.

oo
Theorem A. The harmonic series ) % =1+ % + % + i + - -+ diverges.
n=1

1

L dt diverges since [, 1 dt =1In(c) = oo

This was proved using the Integral Test: floo ’

as ¢ — oQ.

Another proof that the series diverges is to observe that

1>1
1 n 1 N 1 9
2 3 10 © 10
1 n 1 P 1 S 90 9
111 100 © 100 10
1 n 1 P 1 S 900 9
101~ 102 1000 ~ 1000 10
1 n 1 P 1 S 9000 9
1001~ 1002 10000 ~ 10000 10
and so by adding both sides we see that > % is at least as big as 1+ %—f— 1% + 1%—1—- -+ = 00.
n=1
Theorem B. The series ((z) = > -L converges for all x > 1.
n=1

This was also observed in Calculus II using the Integral Test for convergence:

<1 1
/ —dt = < 00
1 t* z—1

oo

if z > 1. Recall that this does not give us the actual value of >  n~*, which must be
n=1

determined by other methods; it does however provide upper and lower bounds

1 1
R 14 ——-.
x_1<C(x)< +w—1

71'2
6
We remark that the Riemann zeta function ((z) is in fact defined for all complex

For example we have ((2) = as shown on another course handout.

o
numbers z # 1, and has values ((z) € C. The series Y n~* only converges for z = = + iy
n=1



with > 1, but this expression extends uniquely to an analytic (differentiable) function
((z) for all z € C, z # 1.

We have observed the Fuler factorization
> =)
= — = S
—n y 1 e
o)D) o)
X oo
1— 5/ \1— 5/ \1— &/ \1— L/ \1 - 4

11=

valid for all > 1, and the product is over all primes p.

Theorem C. The series Z}—l) = % + % + % + % + 11—1 + .- - diverges.
P

Proof. Recall the geometric series

1
1—u

=1l+u+u’+u’+---,

convergent whenever |u| < 1. Integrating both sides with respect to u as in Calculus II

yields the Taylor series

2 3 4 o

1 u
convergent whenever |u| < 1 (the series also converges in fact for u = —1, although we will

not need this fact here). Now for > 1, we have

In¢(z Zln(l_ )
o ZZ kpka:

p k=1

_Z ZZ kpkx

p k=2

where, as usual, p ranges over all primes. Note that ((z) — co as z — 11, so In((z) — oo
also. We have split In((x) into two sums, and we claim that the latter sum is bounded

(i.e. stays ‘small’) as x — 17 ; indeed

ZZ kpkx < _ZZ pke

p k=2 pk2



and now we use the sum of the geometric series

oo

11 111

2 = e e T
1/p> 1 2
- p(pt—1) " p*

to obtain

ZZ@<Z—<ZT—2=C(2):%<<>@.

p k=2 P r=1
Now recall that

In((z) = Z ]% + (‘other terms’)
P

where the ‘other terms’ remain less than %2 as r — 17. But the left side ((z) — oo as

x— 17 50> 1% — 00 as « — 11. This proves the result. ]
P

A slight variation of ((x), in which we sum only over the odd positive integers n, gives
the function
1
Lo(x) = ), —
n odd

—1+1+1+1+1+
n 3z 5T 7T 1=

—<1+1+1+ ><1+1+1+ )<1+1+1+ ) x
B 3w 9v 50 25¢

(i 7)
yaat

whenever x > 1. (Here the product is only over the odd primes p = 3,5,7,11,....) Taking

the natural logarithm of both sides gives

InLo(z) = ) m(l_l%)

p odd p

=1
DIPI-=

p odd k=1

= Z im + (‘small terms’)
p odd



where ‘small terms’ refers to terms which do not tend to infinity as  — 17 (they remain

less than some small positive constant; clearly they must remain less than %2 as before).
Note that Lo(z) — oo as  — 17. (One way to see this is to recall that Lo(z) =

(1 — 5)¢(x).) It follows (and no surprise! since this was essentially the conclusion of

Theorem C) that the dominant terms

1 +
Z—x—>oo asx — 1.
poddp

The function Lg(x) is an example of a Dirichlet L-function. In order to define another
such L-function we must first define
0, if n=0,2 mod 4;
x(n)=<¢1, if n=1 mod 4;
—1, if n =3 mod 4.

Now define

In exactly the same way as we obtained the Euler factorization of ((z), we have

Li(z) = (1 SR N )<1+1+1+1+ )(1 S S . B
=T Ty T 5e ' 257 ' 1257 7e " 49r 343
_H( _x(p))

As usual, p ranges over all primes (although p = 2 contributes nothing to the sum or

product in this case since x(2) = 0). Once again, taking the natural logarithm of both

InLy(z) = ) 1“( - x(p)>

p odd pT

sides yields

p odd k=1

= Z X small terms’)
p odd

where ‘small terms’ refers to terms which do not tend to infinity as z — 17. Note that
unlike ¢(x) and Lo(z), the function Li(z) does not tend to infinity as x — 17 ; indeed

Li(z) — 1 1+1 1+1 1+ - <
375 779 11 o

4



as z — 17. (The convergence of this series follows from Leibniz’ Test for alternating series;
its value is in fact 7, as you might have also seen in Calc II.) This means that the dominant

terms converge:

Z &f) has a finite limit as x — 17 .
p odd p

By adding this to the dominant terms of Lg(x), we see that

1
2 Z — =00 asx — 17 ;

p=1 mod4 p

and by subtracting instead of adding, we see that

1
2 Z — = 00 as T — 1T,
pE3mod4p

This proves the following Theorem of Dirichlet:

Theorem D. Both of the sums

3 .t . 1rt.1.
p 5 13 17 29

p=1 mod4

and

1—1+1+1+1+1+
p 3 7 11 19 23
od4

Pp=3 m
diverge. In particular, there are infinitely many primes p = 1 mod 4, and there are

infinitely many primes p = 3 mod 4.



