The E; Root Lattice and Conway’s Ovoids

G. Eric Moorhouse, March 1991

These lecture notes were prepared for my audience at a UW departmental seminar
given in March, 1991 as relevant background when introducing my generalization [6]
of Conway’s ovoids.

0. Introduction

Conway [1] has constructed four new infinite families of ovoids in OgF (p) for p prime,
and these in turn produce large numbers of ovoids in Og-“ (p) by the process of ‘slicing’
described last term; these 6-dimensional ovoids correspond, via the Klein correspondence,
to translation planes. A couple of previously known 8-dimensional ovoids, previously
thought to be sporadic, actually belong to Conway’s lists.

Let V be a finite orthogonal space of type Og (q). A k-cap in V is a set of singular
points of V', no two of which are orthogonal. Any cap is of size < ¢3+1, and a (¢ + 1)-cap
is known as an ovoid. If O is an ovoid in V, then for any singular point x ¢ O, the space
xt /x is of type Of (¢), and the ‘slice’ (ONzt)/x is a (¢® + 1)-cap, i.e. an ovoid, in =+ /z. In
general this ovoid (and the resulting translation plane) depend on the choice of x. However
if z and 2’ are singular points of V outside O, and if z and 2’ are equivalent under the group
of O, then x and 2’ give equivalent 6-dimensional slices and hence isomorphic translation
planes. Since most known ovoids have very large (and often two-transitive!) groups, they
tend to yield only small numbers of translation planes. Perhaps the most unique feature of
Conway’s ovoids is that they have groups of bounded order (in fact, subgroups of the Weyl
group of type Ejg), and so as ¢ — oo, the number of orbits of singular points under the
group of the ovoid, grows without bound. Thus Conway’s ovoids yield large numbers of
new translation planes; indeed Conway has privately conjectured that ‘most’ of the known
finite projective planes are his, in the sense that

. no. of iso. classes of planes of order < n obtained from Conway’s ovoids ]
im —1,
n—o0 total no. of known proj. planes of order <n

and this seems a reasonable conjecture. Verifying this conjecture would depend on show-
ing that inequivalent choices of singular point z ¢ O very often yield non-isomorphic
translation planes, and Conway has already designed an invariant of projective planes for
this purpose, and has set C. Charnes, one of his students, to work to investigate non-
isomorphisms.

The constructions of these families require some knowledge of the Eg root lattice,
in particular the number of vectors of a given norm in the lattice, and we have tried
to include some of theis background in this presentation. In particular we describe the
Theta-function of a lattice, which embodies the number of vectors of a given norm in the
lattice, in the same way as the weight-enumerator of a code lists the number of codewords
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of a given weight. Analogous to the MacWilliams relations for codes, we have the Jacobi
Theta-function identity, derived in Section 2 using the Poisson Summation Formula; these
place strong constraints on the possiblities for self-dual codes and lattices, respectively.

1. Lattices

For u,v € R"”, we denote the standard inner product by u-v. A lattice in R" is the Z-
span of a basis of R™, i.e. a Z-submodule of R™ of rank n. Suppose that L is such a lattice.
The dual of L is defined by L' = {v € R” : u-v € Z for all u € L}; clearly L’ is also a
lattice of R™. In case L' = L, we call L self-dual. Suppose that {e1,es,...,e,} is a base
for L, and let A = (ei ~ej) , the Gram matrix of this base. The discriminant of
L is defined to be

1<ij<n

disc(L) = det A = (det <e1 es.. .en>>2,

which is independent of the choice of base for L. Observe that the n-volume of the ‘par-
allelepiped’ cell with sides e, es,...,e, is y/disc(L), and so the density of points of the

lattice L per unit volume in R™ is (disc(L))_l/ ?. Then L C L if and only if the entries of
A are integers, and in this case, equality holds if and only if disc(L) = 1.

The norm of a vector v € L is v-v. (Unfortunately perhaps, this is not a norm in
the usual analytic sense, as is /v -v; however, this is standard usage for lattice theory,
and is consistent with the common algebraic usage.) Let N, (o) be the number of vectors
v € L of norm «. The Theta-function of the lattice L is the power series

@L(z) = Z q(v-v) _ Z ewi(v.v)z — ZNL(Q)ewiaz, q= ez

veL veL a>0

Often we are interested in considering this purely as a formal power series; for other
purposes, however, we consider this a holomorphic function in z € C, convergent for Im z >
0 (i.e. |¢| < 1). (This follows easily from the fact that [{v € L : v-v = m}| = O(m™/?).)
It is clear from the above Fourier expansion for ©, (z) that ©, (z) is periodic with period 2.
Another important functional relationship for the Theta-functions of self-dual lattices will
be obtained in Section 2.

In this paper we are primarily interested in the Eg root lattice, defined as the set
E of all vectors in R® of the form %(al,aQ, ...,ay) such that a; € Z, a1y =axy= ... =ay,
mod 2 and ) a; =0 mod 4. Clearly the shortest nonzero vectors in E are the 240 vectors

1(£1,+£1,...,+1) (an even number of — signs) (128 of these),
(+1,4+1,0,0,0,0,0,0) and permutations thereof (112 of these)

of ‘norm’ 2, known as the root vectors of the lattice, and we may have alternatively
defined E as the Z-span of these 240 root vectors. Thus ©,(z) =1+ 240¢% + ---. A pop-
ular choice for a base for E is the set of fundamental roots given by {1(11111111),

2



(-1000000), (0-~100000), (00--0000), (0001-000), (00001-00), (000001-0), (0000001-)}
(here ‘-’ abbreviates —1). The Gram matrix for this base of F (also known as the Cartan
matrix of the Eg root system) is

2 0 0 -1 0 0 0 0
0 2 -1 0 0 0 0 0
0 -1 2 —1 0 0 0 0
-1 0 -1 2 -1 0 0 0
0 0 0 -1 2 -1 0 0 |’
0 0 0 0 -1 2 -1 0
0 0 0 0 0 -1 2 -1
0 0 0 0 0 0 -1 2

which is an integral matrix of determinant 1, and so F is self-dual. Furthermore it is
apparent from the diagonal 2’s that every vector in E has even norm, i.e. N;(m)=0
whenever m is odd. We remark that this Cartan matrix is equivalent to the usual Eg
Coxeter-Dynkin diagram, with vertices labelled according to the rows of the matrix as

follows:
2 3 4 5 6 7 8

1

(More will be said concerning this diagram in Section 5.) Conway’s ovoid constructions
hang on an explicit determination of N;(m), the number of vectors v € E of norm m € Z.
This will be accomplished in the next three Sections using analytic methods to determine

O (2). Actually, with very little work we can arrive at the formula

O, (2) = 2[02(2)° + 03(2)® + 04(2)%] = 1 + 240¢> + 2160¢" + . ...

where

Os(z) = S q(m+§)2 =2q1/4+2q9/4+2q25/4+...,

m=—0oo

O3(2) = > ¢ =1+2¢+2¢"+2¢° +2¢"0 + ..,
04(2) =05(z+1)= > (—q)m2:1—2q—i—2q4—2q9—|—2q16—....

\ m=—o0

However, this expression for ©(2) is of little value for us, since it does not explicitly give
N (m). To illustrate the difficulty in a more familiar setting, let A = 78, considered as a
lattice in R®. Clearly A is self-dual, and since the Theta-function for the lattice Z C R is
given by 03(z) above, it is not hard to see that

0,(2) = 03(2)° = (1+2¢+2¢* +2¢° +...)" = 1 + 16¢ + 112¢° + ... .
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However, this is very far from an explicit determination of the coefficient N, (m) of ¢™ in
the above expansion. Actually, N, (m) is the number of ways m may be expressed as a
sum of eight integer squares (using positive and negative integers, and counting different
orders separately), and this is difficult to evaluate in closed form!

Note that the points of A may be taken as centres of spheres of radius % in a ‘rect-
angular’ sphere-packing of R®, where each sphere ‘kisses’ exactly 16 other spheres. The
lattice £ does much better: we may use spheres of radius 1/4/2, and so the resulting
sphere-packing is 16 times as dense as the rectangular packing, and each sphere kisses
exactly 240 others. In fact, E determines the densest possible lattice sphere packing in
eight dimensions*.

2. The Poisson Summation Formula
We shall need
(2.1) / e~ qt = V7/a.

This integral I is is evaluated by the well-known trick

2T poo
[2 :// e_“(’”2+y2)dxdy=/ / e_ar2rd7°d9
R2 0 0
27 [e’s) 5 1 T
:/ do / re 4" dr = (27r) . (—) = —.
0 0 2a a

Recall that the Fourier transform of a function of one variable, f(z), is defined by

I O A O
We need in particular

(2.3) the Fourier transform of f(z) = =" is given by f(y) = \/ée_”%f/a,
for a > 0.

To prove (2.3) we employ another couple tricks, differentiating under the integral sign, and
then integrating by parts:

o0 . =00
(f) () = —27Ti/ ge~ 2wy g=az® g % e 2miTy g(gmaz’)
o0 r=—00
) . =00 9
e Y S Y
a — 00 a r=—o0 Qa

* Note added in 2017: As we now know (after 2016), this is in fact the densest possible sphere packing in
eight dimensions, lattice packing or otherwise [7].
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which may be regarded as a differential equation for f(y). Using the initial condition
f(0) = y/7/a, this gives the unique solution for f(y) stated in (2.3).

Generalizing (2.2), the Fourier transform of a function f(x) defined on R", is defined
by

@) Fo)= [ e e,
We require
(2.5) the Fourier transform of f(x) = e~*** is given by f(y) = (g)n/Qe_7r2 yy/a,

To prove this, write x = fy +v where y=,/y -y and v € y*. Then dx = dsdv and using
)
(2.1) and (2.3) we obtain

o
~ . 2
fly) = / / e 2T gmaSTAVY ¢ gy
R*—1J -0
n—1 0o ) 00 . )
= (H/ e i dvj) </ e 2miysg—as ds)
n—1 1
() )
a a ’

The most important functional identity for theta-functions of lattices is derived from

which proves (2.5).

the following theorem, which relates sums of values of a function over a lattice, to the sum
of values of the Fourier transform over the dual lattice:

1 ~
2.6 Theorem (Possion Summation Formula). Z f(x) = — Z f(y).
rd leSCLygL/

For a proof, see [3], [5].
The Poisson Summation Formula determines the Theta-function of a dual lattice in
terms of that of the original lattice:

2.7 Theorem (Jacobi Theta-Function Identity).

0,/(z) = m(é)”/Q@L(—yz).




To prove the Jacobi identity, since both sides are holomorphic in Im z >0, it suffices to
consider z=it, t>0. Then O, (it) = Y, ., e ™** and O, (=1/it) = > /. e TY Y/t
and so (2.7) follows from (2.5) and (2.6).

The Jacobi identity gives strong constraints for self-dual lattices. In particular for the
Fg root lattice E defined in Section 1, we have

(2.8) O (2 +2) = 6,(2), O, (—1/z) = 210, (2).

3. Eisenstein Series
We begin with the series
o.@]

1 w2
(3.1) Z (m+z)2 = 2

sin“ 7z
m=—0o0

To prove this, both sides have a double pole at z = 0 with the same residue, and no other
poles; hence the difference f(z) = anoz_oo (miz)i‘ - Sin“;m is an entire function of z. We
wish to show that f(z) = 0. Since f(it) — 0 as t — oo (t € R), it suffices to show that
f(z) is constant. Since any nonconstant entire function assumes arbitrarily large values
outside any compact subset of C, and since f(z + 1) = f(z), it suffices to show that f(z)

is bounded on each region 0 <Rez <1, |[Imz|>1. This we leave as an exercise.

Rewriting (3.1) as

mlesc? mz = 1 +§: L + L
22 (z+m)?  (z—m)?

m=1

and integrating both sides with respect to z, gives

1 [ 1 1 1 | — 2z
t = — = — _
oot z+mZ:1L+m+z—m} z+mZ:122—m2

(That the constant of integration is 0, follows from the fact that the left side is an odd
function of z.) Thus

22

[oe)
zecotz=1-—2
mZ:1 m27r2(1 — (z/mw)2)

co o0 ZQn 0o 2\ 2n
=123 3 S =12y e (3)

m=1n=1
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where ((s) = Y po, k% is the Riemann zeta-function. However, even some first-year
calculus students can give the first few terms in the Taylor series

zcotz:l—% 2 41524—ﬁz6—
(Actually the coefficient of 22" is (—4)"Bs,,/(2n)! in terms of the Bernoulli numbers Bs,;
however this is not relevant to our present study, which requires only the first few terms.)

Thus

4 6

L) =550 C(6) = 5o ete

2
6 945’

32)  <@2)=

(In view of the previeous remark, we have ((2k) = (—1)k+1(271)2% By, /2(2k)! )
Now writing ¢ = e™*, we have sinmz = (¢% —1)/2iq, and so (3.1) may be rewritten as

oo oo

2 (m%l—z)z - q2 = (2mi)* 3 ra”

m=—oo (1 - q2 r=1

Differentiating both sides k —2 times with respect to z, where k € {2,4,6,8,...}, and
d 2r
= 27riq, we obtain

using

- (_1)k(k k—1 2r
Z W (27i) Zr

m=—0o0

Replacing z by nz and summing over n > 0 gives

- - ) nr_(_27m:)k - m
; Z_ (m +nz)k k’ 'erk K _(74:—1)!mz_lak_l(m)q2 ’

= n=1r=1

in terms of the multiplicative number-theoretic function o4(m) = > d°, summing over all
positive divisors d | m. Now we are ready to introduce the Eisenstein series G (z) and
the normalized Eisenstein series Fj(z), defined by

1
Gr(z) = -
(mmzﬂw (m +nz)*
Gula) _, , (F1Menk & S
56~ G 2 kM R=2,468,

(3.3)

holomorphic in Im z > 0, i.e. |¢| < 1. (In view of (3.2) and the remarks thereafter, the ugly
coefficient in front of the latter sum reduces to —2k/Bj .) It is clear that these functions
both satisfy the functional identities F(z+1) = F(z), F(—z"1) = 2*F(z), which we shall
pursue in the next section. We are especially interested in
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1
Ga(z) = Z (m+ o)t
(m,n)#(0,0)
(3.4)

I
)

45 - ;
B = 01 = 142005 o, 4=

m=1

4. Modular Forms

The full modular group is the group I' = PSL(2, Z) consisting of transformations of the
form

Z

az+b a b
1 d ( d) € SL(2,7Z)

acting on the upper half-plane Im z > 0. Then T is generated by the two transformations
z +— z+1 and z — —1/z. Let G(2) denote the subgroup of I' generated by the two
transformations z +— 2z +2 and z — —1/z. Then G(2) consists of precisely those transfor-
mations in I' such that a, b, ¢, d are either odd-even-even-odd or even-odd-odd-even. Since
(GG (2) is the pre-image of {((1) (1)), ((1) (1))} under the epimorphism I" — SL(2,2) = S3, we have
[I': G(2)] =3. A fundamental domain for G(2) is the region

Q={2z€C :Imz>0, |z]>1, —1<Rez<1}.

We illustrate © and its images under G(2):

Let k € {2,4,6,...}. A modular form of weight k for G(2) is a C-valued function
f(2) defined and holomorphic on the upper half-plane Im z > 0, such that

b
(i) f(ijid) = (cz 4+ d) "% f(2) for every transformation z — Zjig in G(2), and
(ii) the Laurent expansion of f(z) in ¢=e™* has no negative powers of ¢, i.e. f(z) =

ZZO:O ang"™.



Clearly condition (i) is equivalent to

() f(z+2) = f(2), f(=1/2) = 2" f(2).

The values of f(z) on  determine the values of f(z) everywhere on the upper half-plane.
Also, the set of modular forms for G(2) of a given weight k, constitute a vector space. It
is known (see [4]) that the space of modular forms of weight 4 for G(2), is 2-dimensional.
We have already encountered certain functions in this space:

Op(z) = 1+ 240¢° + 2160¢" + . . .,
©,(2) =1+ 16q +112¢* + ...,

Ey(2z) = 1 +240¢* + 2160¢* + ... .

Therefore ©,(z) is a C-linear combination of ©,(z) and E4(z), and comparing the first

few coefficients gives

Op(2) = Ex(2) = 1+ 240 > _ o3(m)g*™.

m=1

This finally answers our question regarding the number of vectors v € E such that v-v =
m:

1, m = 0;
Ny (m) = { 24003(m/2), m =2,4,6,..;
0, m odd.

5. The Weyl Group of Type FEqg

For each of the 240 root vectors e € E we consider the reflection of R® in the hyperplane
el, ie. To(v) = v — (v-e)e. (Recall that e-e=2.) The Weyl group of type FEg is
the group W = W (Eg) generated by these 240 reflections. This is a subgroup of Og(R)
of order 21435527 = 696,729,600 which leaves invariant the lattice E (this is a property of
root systems). W has a normal subgroup W’ of index 2 consisting of rotations, and W’
has a centre (—I) of order two. The quotient group W'/(—1I) is a simple group of order
21235527 = 174,182,400, usually denoted Qg (2), for reasons which will become apparent
below.

Let eq, es, ..., eg be the eight fundamental roots of E given in Section 1. The

e -e;

corresponding reflections Te,, i=1,2,...,8 suffice to generate W. Let 6;; = cos™* %,
which is the angle between e; and e;, and let m;; = n/(m — 6;;), which is the order

of Te,Te,;. Refering to the Coxeter-Dynkin diagram of type Eg given in Section 1, with
vertices labelled 1,2,....,8, we have

L, 1=y,
mij = { 2, vertices i # j unjoined,
3, vertices i # j joined.
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Then W is given by the presentation
W (51,5005 ¢ (s08)™ = 1),

where T, — s; determines the isomorphism.

Now let L be a lattice in R™, and let p be a prime. Then L/pL is a Z-module of
rank n which is annihilated by pZ. Hence L/pL is a module of rank n for Z/pZ, i.e.
an n-dimensional vector space over F,. Let — denote the reduction modulo p, so that
X€ L =L/pL forx € L,anda € F, for a € Z. Reducing %x-x € Z modulo p gives a
quadratic form on L, which is clearly well-defined:

Q:L—T, Q(i):%x-x.

The associated bilinear form,

~

X,y)=QF+Yy)-QEX) -Qy) =xy,

is nondegenerate if and only if p X disc L. We shall consider only L = FE, the self-dual
FEg root lattice, and so E = E/pE becomes an Og (p) orthogonal space with quadratic
form Q(X) = %x-x. Since W preserves E, pE and the inner product x -y, it acts on E,
preserving the quadratic form ), and so W acts as an isometry group on the finite orthog-

onal space E of type Of (p). For p odd, this action is faithful (since —I acts nontrivially
and W'/(—I) is simple); hence W C O(E) = GOy (p). For p=2, —I acts trivially and
so W/(—1I) acts faithfully on an Og (2) orthogonal space, so that W/(—1I) C GOy (2); but
comparing orders, we find that equality holds.

6. Ovoid Constructions

Using counting arguments and mathematical induction on the dimension, one obtains the
following (also mentioned last semester):

(7.1) An Of (g)-space has exactly ¢7 +q* —¢® singular vectors (v such that
Q(v)=0), and for each o € F, \ 0, exactly ¢" —¢3
v such that Q(v)=0. (Total: ¢® vectors.)

(nonsingular) vectors

Consequently,

(7.2) E/2E has 27 +2* — 2% = 136 congruence classes with 3v - v =0 mod 2,
and 27 —23 = 120 congruence classes with %V-V = 1 mod 2 (total:
136 4+ 120 = 256 = 28 congruence classes).
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(7.3) E/3E has 37 + 3% — 3% = 2241 congruence classes with 1v-v =0 mod 3,
and for k=1, 2, exactly 3* — 3% = 2160 congruence classes with %V v=k
mod 3 (total: 2241 + 2160 + 2160 = 6561 = 38 classes).

The ‘Binary’ Construction

Let Vo, = {v € E : v-v=2m}, so that |Va,| = 240(p® + 1) where p is any odd prime.
Partition V3, into congruence classes modulo 2E: for x € V5, define

[x] ={veVy : v=x mod2E}.
Now reduce the vectors v € [x] modulo pE to obtain
Oq(x) = {(v) : v € [x]}.

(Here (V) = F,V denotes the point, i.e. one-dimensional subspace of E, spanned by V.)

We claim that Oa(x) is an ovoid in E, for every x € Va,. Since Q(V) = %V -v=p=0 for

every v € Va,, O2(x) consists of singular points of E.

Suppose that (), (V) € Oz(x) such that (a,v)=0, i.e. u-v = 0 mod p. Then
uu=v-v=2pand so (u—v)-(u—v) =0 mod p. But also u—v € 2F implies
that (u —v)-(u—v) = 0 mod 8. Together this yields |u — v|[?> = 0 mod 8p. But

2 2
0< flu—v|? < (Jul +vl)" = (VZp + v2p)" = 8p.

\4 - — —

This allows only two cases: (i) u—v = 0, or (ii) u = —v. (We obtain (ii) from the case
of equality in the triangle inequality.) But both cases yield the same point (@) = (v). We
conclude that pairs v € [x] yield distinct points in O2(x), and that Oz(x) is a cap of size
1 in E
1|[x]| in E.

By the remarks in Section 0, we have |O2(x)| < p® + 1, i.e. |[x]| < 2(p® +1). But we
have a partition

x€Vap
with at most 120 classes by (7.2). Since |Vap| = 240(p® + 1), equality must hold: |[x]| =

2(p% +1), |O2(x)| = p® + 1. Thus Oy(x) is an ovoid in E.

It turns out (see [1]) that different choices of x € V5, yield equivalent ovoids Oz(x)
(i.e. equivalent under GOZ (p)). So fixing some particular choice x € Va,, we have one
‘Conway binary ovoid’ in O; (p) for each odd prime p. The stabilizer of such an ovoid
in GOY (p) is a subgroup of W =W |(Eg) given by (—1) x W(E7) = 22 x S¢(2), of order
211.35.5.7 = 5,806,080; here the central factor (—1) acts trivially on the ovoid.
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The ‘Ternary’ Construction

For this construction we take p to be a prime > 5, and Vi, = {v € E : v-v=4p}, so
that |Vy,| = 2160(p> + 1). This time we partition Vj, into classes modulo 3E: for x € Vy,,
define

[x] ={veVy : v=x mod 3E}.

Reduction of the vectors v € [x] modulo pE yields
Os(x) = {(v) : v € [x]}.

Again, O3(x) consists of singular points of E. Suppose that (u), (¥) € O3(x) such that
(u,v)=0, i.e. u-v =0 mod p. Since u-u=v-v =4p, we have (u—v)-(u—v) =0
mod p. Also u—v € 3E implies that (u —v)-(u—v) = 0 mod 18, so |[u — v||* = 0
mod 18p. But 0 < [lu — v[* < ([Ju]] + ||V||)2 = (Vip + \/4_]9)2 = 16p, so u=v, and so
distinct vectors v € [x] yields distinct points (V) € O3(x), and O3(x) is a cap in E, of size
|03(x)| = |[x]| < p®+ 1. But the partition

Viap = U [x]

x€Vap
has at most 2160 classes by (7.3), each of size at most p* + 1. Since |Vy,| = 2160(p> + 1),
equality holds: |O3(x)| = p® +1 for all x € Vj,, so O3(x) is an ovoid.

For p=1 mod 3, the resulting ‘ternary ovoids’ do not depend on the choice of x € Vy,,,
and the stabilizer of such an ovoid in GOZ (p), is a subgroup of W given by (—1) x W (D7) =
27:57 of order 2'1.32.5.7 = 624,120.

However, for p=2 mod 3, depending on the choice of x € Vj,, we obtain either the
“first” or ‘second’ ternary ovoid. The first type has stabilizer (—1) x W(E;) = 22 x Sg(2),
of order 2!1.35.5.7 = 5,806,080; the second type has stabilizer (—1) x W (Ag) = 2 x Sg of
order 24.31.5.7 = 725,760. In each case (—1) acts trivially on the ovoid.
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