

Data Compression

Data compression is any process by which a digital (e.g. electronic) file may be
transformed to another (“compressed”) file, such that the original file may be fully
recovered from the original file with no loss of actual information. This process may be
useful if one wants to save storage space: for example if one wants to store a 3MB file, it
may be preferable to first compress it to a smaller size. Also compressed files are much
more easily exchanged over the internet since they upload and download much faster.
We require, however, the ability to reconstitute the original file from the compressed
version at any time.

This process is different than what often happens in ‘compressing’ a digital photograph,
say, where significant reduction in file size is possible by sacrificing image resolution: a
high-resolution 2MB digital image may be transformed to a 50KB image which is more
appropriate to put on your website (since 2MB files take a long time for visitors to your
website to download) but the 50KB version is coarser or grainier than the original image,
and the original version cannot be recovered from the 50KB version. We are not
considering this type of ‘lossy compression’; it is understood that here we are not
tolerating any degradation of data.

It must also be observed that not every file can be compressed to a smaller size (without
loss of actual information). Otherwise we could compress a 3MB file to 1.2MB (say),
then compress it again to 350KB (say), then compress it again to 70KB (say), etc.,
repeating this process until the resulting file is only 1 byte in size. Clearly we cannot
expect every 3MB file to be compressible in this way since there are only 28=256
different possible 1-byte files, but a much larger number of 3MB files (actually 21073741824
such files, a number of more-than-astronomical proportions!). Typically text files are
highly compressible; binary executable files are somewhat compressible; and audio files
or digital images are rather incompressible since they are already compressed.

If a 3MB file can be compressed to a 1.2MB file with no information loss, why would we
have any further need for the 3MB file? If the 3MB file is plain text (for example your
email correspondence for the year 2003) then it would not be readable in compressed
form. Or if the 3MB file were a binary executable file, it would not be recognizable in
compressed form by your computer’s operating system. So even if a 1.2MB file
contains, in principle, all the information of your original 3MB file, it will usually be
necessary to recover the original file (at least temporarily) from the compressed version,
before the information can be accessed or used. And it will be necessary to have efficient
algorithms for both the compression and decompression of data.

Having read my argument above (about why it is ludicrous to expect every file to be
compressible), you might well wonder how it is that file compression is possible at all.

 2

Upon close inspection, however, you will see that my argument really only shows why
not all files are compressible. It is still reasonable to expect that many everyday files are
compressible using a compression utility such as WinZip®, and others are not. The files
that are more successfully compressible are those with a high degree of repetition or other
observable pattern. If, on the other hand, WinZip is applied to a binary file having a
highly random appearance with no evident pattern, the utility may actually return a
“compressed” file that is larger than the original.

Consider, for example, a 1MB binary file consisting of a string of zeroes. Since there are
23=8 bits in every byte, such a file may arise as a bitstring ‘000…0’ of length
220×23=223=8388608. The same information may be summarized in a much smaller file
that simply tells WinZip “This is a file consisting of 8388608 bits, all of which are
zeroes”. Similarly, a 1MB binary file consisting of the bitstring ‘010101…01’ can be
summarized in a much smaller file that tells WinZip “This is a file consisting of 8388608
bits formed by the bitstring ‘01’ repeated 4194304 times”. Most large files will not be as
highly compressible as these extreme examples, but all occurrences of pattern provide at
least some opportunity for compression; for example, if the character string ‘the’, or
some other sequence of symbols, is represented frequently in a file, this can be
represented in an abbreviated form in the compressed file.

Ideally, we might hope for a ‘perfect’ compression algorithm that compresses ‘most’
everyday files as much as possible (recognizing that any such algorithm will actually
enlarge some files, those files with no exploitable repetitions or patterns). Such an
algorithm, we expect, would never be outperformed by any other compression algorithm.
Surprisingly, no such optimal algorithm exists! What do I mean by this? Do I mean that
no one has figured out yet how to design the best compression algorithm? No! I am
telling you that no such algorithm is possible, even in principle. Worse than that, there
cannot even exist an algorithm telling the smallest size to which a given file can be
compressed. (Note that here we are presumably asking for less than the optimally
compressed file, if we are asking only for the size of the optimally compressed file.) It is
a mathematical theorem that no such algorithm can possibly exist. Just as trisecting an
angle with a straightedge and compass is impossible (there is also a theorem to this
effect).

The good news is that there are algorithms that do a reasonably good job of compressing
many of our everyday computer files, especially text files. No such algorithm is optimal,
but some are better than others, and those with better compression ratios tend to require
more execution time.

We now proceed to explain how data compression is possible using Huffman encoding
works. This will not only explain how practical data compression is possible, but also
provide a foundation for understanding entropy as a measure of the actual ‘information
content’ of an information source.

 3

Huffman Encoding: Example 1

A file containing English language text, is a stream of characters (upper and lower case
Roman letters, digits, punctuation marks, and other symbols such as ‘$’, ‘%’, etc.) with
varying frequencies. Typically the blank symbol ‘ ’ will be most frequent, followed by
the letter ‘e’, etc. with symbols ‘q’, ‘#’, appearing infrequently. Moreover certain
combinations of characters will occur more frequently than others.

We will model this situation by adopting a simplified alphabet with only eight possible
characters E, T, A, S, R, I, O, D occurring with frequencies as given by the following
table:

character E T A S R I O D
frequency 0.50 0.15 0.12 0.10 0.04 0.04 0.03 0.02

In practice our file will typically be given in binary form; if the file is n characters in
length, we may assume it is originally given as a binary file of size 3n bits, in which the
letters E, T, …, D are represented by the eight bitstrings 000, 001, …, 111 respectively.
We now show how to take advantage of the dominance of the letter ‘E’ to compress a
large file with this character distribution, to a file of length about 2.8333n bits on average
(6.6% shorter than the original file). This compression is achieved using an encoding
based on the following ‘tree’ or ‘trellis’:

0.02

0.03

0.04

0.04

0.05

0.04

0.04

0.05

0.05
0.08

0.08
0.13

0.13

0.10

0.10

0.12
0.22

0.22

0.12

0.15

0.50

0.15

0.13
0.28

0.28

0.22
0.50

0.50
1.001

1

1

1

1

1

1

0

0

0

0

0

0
0

The trellis is constructed as follows: We first list the eight characters on the left, in
decreasing order of frequency from top to bottom. A horizontal line extends to the right
of each character, labeled by the corresponding frequency. We check that these
frequencies add up to 1.00. We then join the bottom two characters, adding together their
frequencies: 0.02 + 0.03 = 0.05. Since this is no longer the lowest frequency in the list, it
‘bubbles up’ above the lines corresponding to ‘R’ and ‘I’ (having frequencies 0.04 and
0.04). We now have only seven horizontal lines instead of eight, and the frequencies
labeling these lines are again listed in decreasing order from top to bottom. Again merge
the bottom two lines to obtain a single line with combined frequency 0.04 + 0.04 = 0.08,
and ‘bubble’ this up above the previous line to restore the decreasing order of
frequencies. Repeat until all horizontal lines have merged to one line. At each stage,

 4

moving from left to right, we check that the frequencies add up to 1.00; in particular the
last horizontal line on the right is labeled by the total frequency 1.00.

Every time two horizontal lines merge, moving from left to right, we label the upper
branch ‘1’ and the lower branch ‘0’. For each of the eight characters in turn, the path
from left to right starting at that character passes through a sequence of 0’s and 1’s, and
we reverse this string to obtain the Huffman codeword for that character. This gives the
following table of Huffman codewords for each of the eight characters:

character Standard
codeword

Huffman
codeword

E 000 1
T 001 011
A 010 001
S 011 000
R 100 01011
I 101 01010
O 110 01001
D 111 01000

Thus for example, the message text ‘STEER’ would be encoded as the 13-bit string
0000111101011 using Huffman encoding, compared with the 15-bit string
011001000000100 using the standard encoding. The encoding algorithm assigns shorter
codewords to the more frequent characters, in order to reduce the average length of the
encoded file. This feature explains why a Huffman encoded file is usually shorter than
the original.

Decoding of the compressed text involves reading the trellis from right to left; each time
is encountered, the next bit in the encoded text tells us which branch to follow. For
example to decode the compressed text ‘0000111101011’, start from the right side of the
trellis and follow the branches labeled 0, 0, 0 to arrive at ‘S’. Then start again from the
right side of the trellis and follow the branches labeled 0, 1, 1 to arrive at ‘T’ on the left.
Continue in this way until the original text ‘STEER’ is recovered.

Note that Huffman encoding is only successful in the absence of bit errors. For example
if the compressed text ‘0000111101011’ is altered to ‘1000111101011’ as a result of only
the first bit being switched, this will be misinterpreted as ‘ESEEEER’. A single bit error
results in multiple errors in the decoding process! Even the length of the decoded
message comes out wrong in this case.

Note that the most frequent character ‘E’ is encoded as a single bit (fewer than the three
bits required by the standard encoding), whereas the least frequent characters require 5
bits each (more than the three bits required by the standard encoding). The average
number of bits required by a single character is

0.50×1 + 0.15×3 + 0.12×3 + 0.10×3 + 0.04×5 + 0.04×5 + 0.03×5 + 0.02×5 = 2.26 bits,

 5

compared with 3 bits per character used by the standard encoding. Thus a typical binary
file of length 3n bits will compress to a file about 2.26n bits long, on average. Thus the
compressed file is, on average, 2.26/3.00 = 75.3% as large as the original file. As
expected, in the worst case the “compressed” file will be longer than the original
(possibly as long as 5n bits); but this happens only for files consisting of characters ‘R’,
‘I’, ‘O’, ‘D’; and such files are quite rare, according to our table of frequencies. Most
files have lots of E’s, and these reduce the size of the compressed file considerably.

Morse code uses a similar principle of assigning shorter codewords to the more frequent
letters, as the following table shows:

A . — H O — — — V . . . —
B — . . . I . . P . — — . W . — —
C — . — . J . — — — Q — — . — X — . . —
D — . . K — . — R . — . Y — . — —
E . L . — . . S . . . Z — — . .
F . . — . M — — T —
G — — . N — . U . . —

Huffman Encoding: Example 2

In Example 1 we considered an encoding of text, one character at a time. We now wish
to demonstrate how a better compression ratio is typically achievable by encoding strings
of characters. For this example we will simplify our alphabet even further. Let us now
assume that the binary alphabet {0,1} is used, with twice as many 1’s as 0’s. We also
assume that bits are independent of each other. That is, each position in the text is either
0 or 1, and the bit ‘1’ occurs with probability 2/3, independently of the other bits in the
text. (Later we will see how the assumption that bits are independent, affects the
encoding algorithm and the compression ratio.

If characters (i.e. bits) are considered only one at a time as in Example 1, then no
compression occurs: the “compressed” file is identical to the original, as we see from the
following trellis and table of codewords:

Message
string

Huffman
codeword

0 0
1 1

2/3
3/3

1/3

1

00

1

 6

9/9
5/9

4/9
5/9

3/9

2/9
3/9

2/9

4/9

1/9

2/9
1

0

1

01

001

00

10

11

1/27

2/27

4/27

2/27

2/27

3/27

8/27

4/27

4/27

4/27
7/27

3/27

4/27

4/27

3/27

2/27

2/27

7/27

4/27

7/27

4/27

4/27
8/27

16/27

11/27

8/27

8/278/27

11/27

16/27

11/27
27/27

1

01

01

0

1

0

1

0

1

0

1

0

111

110

101

100

011

010

001

000

The assumption that bits are independent random variables means that the bitstrings 00,
01, 10 and 11 occur in the original file with frequencies 1/9, 2/9, 2/9 and 4/9 respectively.
Therefore if we divide the original file into bitstrings of length 2, and apply Huffman
encoding to each of these pairs of bits, we obtain the trellis and table of codewords:

In this case the average number of bits required to encode each pair of message bits is

(1/9)×3 + (2/9)×3 + (2/9)×2 + (4/9)×1 = 17/9 bits.

This algorithm will compress a file of n bits to a file of (17/18) ×n = 0.9444n bits, on
average. For example the input string ‘10111011’ of length 8 will be compressed to the
string ‘010010’ of length six. Note that if the original file does not contain an even
number of bits, then last bit must be treated differently than the previous bits; but this can
be done without reducing the average compression ratio for large files.

We can do even better by grouping message bits together three at a time. This leads to
the following trellis and table of codeword equivalents:

In this case every triple of input bits is encoded as

Message
string

Huffman
codeword

00 110
01 111
10 01
11 0

Message
string

Huffman
codeword

000 0100
001 0101
010 0110
011 100
100 0111
101 101
110 00
111 11

 7

(1/27) ×4 + (2/27) ×4 + (2/27) ×4 + (2/27) ×4 + (4/27) ×3 + (4/27) ×3 + (4/27) ×2 + (8/27) ×2

= 76/27 bits on average. This will compress an input file of n bits to a file of (76/81) ×n
= 0.9383n bits on average, a slight improvement over the compression rate available by
considering the input bits two at a time.

We can achieve even better compression rates if we are willing to group together the
input bits 4 at a time, 5 at a time, etc.; but there is a limit to how much better we can do.
This limit (for data containing random 0’s and 1’s with frequencies 1/3 and 2/3
respectively, with bits in different positions independent of each other) means that an
input file of n bits cannot be compressed to a file any smaller than about 0.9183n bits on
average. The value 0.9183 to which I refer here is actually H(1/3) where H(p) is the
binary entropy function defined by

H(p) = –p log2(p) – (1–p) log2(1–p)

whose graph is shown here:

The base 2 logarithm function appearing in this formula is defined as follows: we say that
log2(N) = k is the value of k such that 2k = N. The reason that base 2 is used in this
context is that we are using two characters (0 and 1) to represent all information. There
are 2k different bitstrings of length k, so it is possible to send 2k different messages using
bitstrings of length k. Now suppose we are given a number N and a list of N different
messages that we might want to send. We want to encode each possible message as a
bitstring of some length k. How large must k be? We must solve 2k = N for k. For
example, suppose we want to send one of the 16 possible hexadecimal digits 0, 1, 2, 3, 4,
5, 6, 7, 8, 9, A, B, C, D, E, F encoded as a bitstring. How long must each bitstring be? In

 8

this case k = log2(16) = 4 since 24 = 16. Thus each hexadecimal digit can be encoded as a
bitstring of length 4 (0=0000, 1=0001, …, F=1111).

One interpretation of the function H(p) is as follows: consider a file consisting of n
random bits (with bits in different positions independent of each other), with 0’s and 1’s
occurring with frequency p and 1–p, respectively. The smallest file to which we may
compress this data will be a file of size about H(p)×n bits, on average. Accordingly, we
view the actual information content of an n-bit file as being H(p)×n bits.

Let’s think carefully what this means in the special cases p = 0, 0.5, 1. If p = 0 then the
frequency of the bit ‘0’ is zero, so the input file consists of a long string of 1’s. As
mentioned earlier, such data is highly compressible; it carries essentially no information.
This is what we expect from the graph, where we clearly see that H(p) goes to zero when
p goes to zero. The same reasoning applies when p = 1: in this case the bit ‘0’ occurs
with frequency 1, so the input file consists of a long string of 0’s. Once again the data is
highly compressible; it carries essentially no information. Again, the graph shows H(p)
going to zero when p approaches 1. The case p = 0.5 means that the data consists of 0’s
and 1’s occurring in equal numbers. This type of data has the most random appearance
of all, and is incompressible. From the graph we see that H(0.5) = 1, so for an input file
of length n bits, the “compressed” file will also have H(0.5)×n = n bits.

Notice that the graph of H(p) is symmetric about the line p = 0.5. This means that H(1–p)
= H(p). We interpret this as saying that interchanging 0’s and 1’s in the data (i.e.
replacing every 0 by 1, and every 1 by 0) does not change the actual information content
of the data. It does mean that 0’s and 1’s will occur with frequency 1–p and p
(respectively), instead of p and 1–p as before. But clearly the choice of two-letter
alphabet is arbitrary: {0,1} is no better than {+,–} or {N,S} or {a,b} or {1,0}.

The entropy function H(p) is also used in physics as a measure of randomness. We
highlight here the fact that information is measured in the same way as randomness.
Evidently data with a high degree of pattern or repetition (i.e. very little randomness),
being the most compressible, carries very little information. Conversely, data with very
little evidence of pattern or repetition (i.e. having the appearance of randomness), being
the least compressible, carries a high degree of information. It was Claude Shannon
whose insight, during the 1940’s and 1950’s, led to the quantification of information in
this way: the possibility of measuring information much as we measure temperature or
volume or electrical current. Of course we are not quantifying the subjective value of
information: this measure will not distinguish between text from a Dr. Seuss book and a
presidential State of the Union address, even though the former may contain much more
information than the latter.

