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Some Consequences of Field Characteristic

Recall that a field F' has characteristic zero if

for all a € F' and every natural number n > 1. If na = 0 for some nonzeroa € F andn > 1,
then the smallest positive n for which this occurs is a prime p, called the characteristic
of F. The unique smallest subfield of F'is either Q or [F,,, according as char F' = 0 or p.
This unique smallest subfield of F' is called the prime subfield of F'. Every subfield of F

contains the prime subfield.

Theorem 1. Let F' be a field of prime characteristic p. Then the map a — a? is a

one-to-one homomorphism of F'.

Proof. Clearly (ab)? = aPbP for all a,b € F, and 17 = 1. Also
(a+b)P = aP + paP~'b + (’2’)@?’_2192 + - pabP 4P = aP +bP

since the binomial coefficients (i) all vanish for £ = 1,2,...,p—1. Thus a — adP is a
homomorphism of rings with identity. Now the kernel of this homomorphism consists of

all a € F' such that a” = 0, i.e. a = 0; so the homomorphism is one-to-one. 0]

Theorem 2. If F is a finite field, then |F'| = p" for some prime p and integer r > 1.

Proof. If |F| < oo then F' has no subfield isomorphic to @, so the prime subfield of F’
is F,, for some prime p. Let r = [F' : F)], so that F has a basis {a1, ag,...,a,} over F,.
Elements of F' are uniquely represented in the form

aroq + aga + - - +apon, a; €F,.

1



There are exactly p” such linear combinations, so |F| = p". ]

If |F| = p" then the map a + aP is in fact an automorphism of F. (It is one-to-one
by Theorem 1; but since F' is finite, every one-to-one map is also onto.)

For example, the field Fy = {0, 1, «v, 5} has characteristic 2; it is an extension of degree
2 of its prime subfield Fy = {0, 1}. We have seen that the map a +— a? is an automorphism
of F4. In fact F4 has just two automorphisms, the identity map and the map a — a®.

Consider also the field Fys = IF5[\/§] = {a + bW2 :a,b € F5}. This field has just
two automorphisms, the identity and the map x +— z® which in fact is just the familiar

‘conjugation’ map since
(a+bv2)° =a® +b°(vV2)° = a — bV2.
(Note that \/55 =42 =—-2)

For every prime p and integer r» > 1, it may be shown that there is a field of order
g = p"; and it is unique up to isomorphism. This field is denoted F,. It has exactly r
automorphisms, namely 1,0, 02,...,0"~! where o : 2 — 2P. Note that o’ : x zP'

If F'is an infinite field of prime characteristic p, then the monomorphism o : x — z?
may or may not be onto; for example if F' = F,(t) or F,,((¢)), then o is not onto; its image
is the subfield F,(t?) or I, ((t?)) respectively, a proper subfield isomorphic to F. This
observation leads into the next topic:

Consider a polynomial f(t) € F[t], and let « € E O F where F is an extension field.
We say « is a root of multiplicity k if (t — «)* divides f(t) in E[t], but (t — a)**! does not
divide f(t). Every root is either a simple root (i.e. a root of multiplicity 1) or a multiple
root (i.e. a root of multiplicity at least 2). If f(¢) € F|[t] is irreducible over F, can f(t)

have a multiple root in an extension field E? It depends.

Theorem 3. Suppose f(t) € F]t] is irreducible over F. If F' has characteristic zero,
then f(t¢) has no multiple roots in any extension field £ O F.

Proof. Let f(t) = ap + a1t + --- + a,t™ € F[t] where a; € F with a,, # 0, n > 1. If
f has a multiple root & € E D F, then f(t) = (t — a)?g(t) for some g(t) € E[t], so
f'(t) =2t —a)g(t)+ (t — a)?g'(t) and f'(a) = 0. Assuming char F' = 0, this gives f/(t) =
a1 +2ast+- - +napt" "t € F[t] where na,, # 0 so deg f'(t) = n—1and ged(f(¢), f'(t)) =1
since f(t) is irreducible. By the Extended Euclidean Algorithm,

u(@)f(t) +v(t) f'(t) =1
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for some u(t),v(t) € F[t] so 0 = u(a) f(a) + v(a) f'(a) = 1, a contradiction. L]

The same conclusion holds if E' is finite. However, if F is an infinite field of prime
characteristic p, then the conclusion fails: consider E = F,(x) with subfield F' = F,(zP).
Then the polynomial f(t) = tP—zP € F[t] is irreducible over F', but factors as f(t) = (t—x)P
over I, by Theorem 1. (You should regard = as a constant here, and ¢ as the variable.)
Note that f/(t) = 0 in this case so ged(f(t), f'(t)) = f(t); for this reason, the proof of
Theorem 3 doesn’t apply here.



