Some Consequences of Field Characteristic

Recall that a field F has characteristic zero if

$$na := \underbrace{a + a + \dots + a}_{n} \neq 0$$

for all $a \in F$ and every natural number $n \ge 1$. If na = 0 for some nonzero $a \in F$ and $n \ge 1$, then the smallest positive n for which this occurs is a prime p, called the characteristic of F. The unique smallest subfield of F is either \mathbb{Q} or \mathbb{F}_p , according as char F = 0 or p. This unique smallest subfield of F is called the *prime subfield of* F. Every subfield of F contains the prime subfield.

Theorem 1. Let F be a field of prime characteristic p. Then the map $a \mapsto a^p$ is a one-to-one homomorphism of F.

Proof. Clearly $(ab)^p = a^p b^p$ for all $a, b \in F$, and $1^p = 1$. Also

$$(a+b)^p = a^p + pa^{p-1}b + {p \choose 2}a^{p-2}b^2 + \dots + pab^{p-1} + b^p = a^p + b^p$$

since the binomial coefficients $\binom{p}{k}$ all vanish for $k = 1, 2, \dots, p-1$. Thus $a \mapsto a^p$ is a homomorphism of rings with identity. Now the kernel of this homomorphism consists of all $a \in F$ such that $a^p = 0$, i.e. a = 0; so the homomorphism is one-to-one.

Theorem 2. If F is a finite field, then $|F| = p^r$ for some prime p and integer $r \ge 1$.

Proof. If $|F| < \infty$ then F has no subfield isomorphic to \mathbb{Q} , so the prime subfield of F is \mathbb{F}_p for some prime p. Let $r = [F : \mathbb{F}_p]$, so that F has a basis $\{\alpha_1, \alpha_2, \ldots, \alpha_r\}$ over \mathbb{F}_p . Elements of F are uniquely represented in the form

$$a_1\alpha_1 + a_2\alpha_2 + \dots + a_r\alpha_r, \quad a_i \in \mathbb{F}_p.$$

There are exactly p^r such linear combinations, so $|F| = p^r$.

If $|F| = p^r$ then the map $a \mapsto a^p$ is in fact an automorphism of F. (It is one-to-one by Theorem 1; but since F is finite, every one-to-one map is also onto.)

For example, the field $\mathbb{F}_4 = \{0, 1, \alpha, \beta\}$ has characteristic 2; it is an extension of degree 2 of its prime subfield $\mathbb{F}_2 = \{0, 1\}$. We have seen that the map $a \mapsto a^2$ is an automorphism of \mathbb{F}_4 . In fact \mathbb{F}_4 has just two automorphisms, the identity map and the map $a \mapsto a^2$.

Consider also the field $F_{25} = \mathbb{F}_5[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{F}_5\}$. This field has just two automorphisms, the identity and the map $x \mapsto x^5$ which in fact is just the familiar 'conjugation' map since

$$(a+b\sqrt{2})^5 = a^5 + b^5(\sqrt{2})^5 = a - b\sqrt{2}.$$

(Note that $\sqrt{2}^5 = 4\sqrt{2} = -\sqrt{2}$.)

For every prime p and integer $r \ge 1$, it may be shown that there is a field of order $q = p^r$; and it is unique up to isomorphism. This field is denoted \mathbb{F}_q . It has exactly r automorphisms, namely $1, \sigma, \sigma^2, \ldots, \sigma^{r-1}$ where $\sigma : x \mapsto x^p$. Note that $\sigma^i : x \mapsto x^{p^i}$.

If F is an infinite field of prime characteristic p, then the monomorphism $\sigma: x \mapsto x^p$ may or may not be onto; for example if $F = \mathbb{F}_p(t)$ or $\mathbb{F}_p((t))$, then σ is not onto; its image is the subfield $\mathbb{F}_p(t^p)$ or $\mathbb{F}_p((t^p))$ respectively, a proper subfield isomorphic to F. This observation leads into the next topic:

Consider a polynomial $f(t) \in F[t]$, and let $\alpha \in E \supseteq F$ where E is an extension field. We say α is a root of multiplicity k if $(t - \alpha)^k$ divides f(t) in E[t], but $(t - \alpha)^{k+1}$ does not divide f(t). Every root is either a simple root (i.e. a root of multiplicity 1) or a multiple root (i.e. a root of multiplicity at least 2). If $f(t) \in F[t]$ is irreducible over F, can f(t) have a multiple root in an extension field E? It depends.

Theorem 3. Suppose $f(t) \in F[t]$ is irreducible over F. If F has characteristic zero, then f(t) has no multiple roots in any extension field $E \supseteq F$.

Proof. Let $f(t) = a_0 + a_1t + \cdots + a_nt^n \in F[t]$ where $a_i \in F$ with $a_n \neq 0$, $n \geq 1$. If f has a multiple root $\alpha \in E \supseteq F$, then $f(t) = (t - \alpha)^2 g(t)$ for some $g(t) \in E[t]$, so $f'(t) = 2(t - \alpha)g(t) + (t - \alpha)^2 g'(t)$ and $f'(\alpha) = 0$. Assuming char F = 0, this gives $f'(t) = a_1 + 2a_2t + \cdots + na_nt^{n-1} \in F[t]$ where $na_n \neq 0$ so $\deg f'(t) = n-1$ and $\gcd(f(t), f'(t)) = 1$ since f(t) is irreducible. By the Extended Euclidean Algorithm,

$$u(t)f(t) + v(t)f'(t) = 1$$

for some $u(t), v(t) \in F[t]$ so $0 = u(\alpha)f(\alpha) + v(\alpha)f'(\alpha) = 1$, a contradiction.

The same conclusion holds if E is finite. However, if E is an infinite field of prime characteristic p, then the conclusion fails: consider $E = \mathbb{F}_p(x)$ with subfield $F = \mathbb{F}_p(x^p)$. Then the polynomial $f(t) = t^p - x^p \in F[t]$ is irreducible over F, but factors as $f(t) = (t-x)^p$ over E, by Theorem 1. (You should regard x as a constant here, and t as the variable.) Note that f'(t) = 0 in this case so $\gcd(f(t), f'(t)) = f(t)$; for this reason, the proof of Theorem 3 doesn't apply here.