
Bell’s Theorem
The CHSH Game

We motivate this topic by considering the CHSH game, in which two participants, Alice

and Bob, are separated by a vast distance. (This is a cooperative game, and we must

exclude the possibility that they are able to cheat by communicating.) Every round of

the game requires that they each send a single bit ‘+’ (‘up’) or ‘−’ (‘down’) to a referee

located at their midpoint. Assuming they had an opportunity to collude beforehand, it

is clear that they can conspire to make their answers agree every time; for example, they

can agree to both always say ‘up’, or both always say ‘down’; or they can both respond

according to some pre-agreed sequence sequence such as −−+−−−++ · · · (determined by

the parity of the digits 3.1415926 . . .). If instead they are required to disagree on every

round, it would again be easy for Alice and Bob to win on every round (e.g. Alice always

says ‘+’ and Bob always says ‘−’).

The actual CHSH game, however, is less trivial due to the use of hidden randomness,

which makes the optimal stragegy less clear. Every round, the referee flips two coins,

yielding a pair of random bits x, y ∈ {0, 1}. The referee sends x to Alice, and y to Bob,

both of whom must respond with ‘+’ or ‘−’. When (x, y) ∈ {(0, 0), (0, 1), (1, 0)}, Alice and

Bob must try to agree in their responses; but when (x, y) = (1, 1), Alice and Bob must try

to disagree in their responses. But since Alice cannot know y, and Bob cannot know x,

they do not even know (half the time) whether they are trying to agree or disagree.
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A strategy that allows Alice and Bob to win 75% of the time, is for both of them to

simply respond ‘+’ every time, regardless of the outcomes of coin flips. Classical reasoning

leads to the conclusion that this strategy is optimal. The startling prediction of quantum

mechanics, however, is that it is possible to do better if Alice and Bob are able to make use

of quantum entanglement. If they are able to generate n EPR pairs of particles beforehand,

with Alice and Bob both taking one particle from each pair to their distant location, they

can in fact win a little over 85% of the time. In his 1964 theorem, John Bell proved an

inequality showing that 75% is the maximum success rate for Alice and Bob under most

natural hidden variable theories. Bell’s Theorem is therefore seen as a ‘no-go’ theorem for

hidden variable theories (not excluding altogether the possibility of hidden variables, but

making it very hard to imagine a reasonable set of assumptions that would support belief

in hidden variables). The predictions of quantum mechanics, notably Bell’s work, have
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been verified in the lab many times since then, using various versions of the CHSH game

(attaining something like 84% success rate for Alice and Bob). A few decades after John

Bell’s death in 1990, the 2022 Nobel Prize in Physics was awarded to Alain Aspect, John

Clauser and Anton Zeilinger for their laboratory verification of Bell’s work.

John Bell Alain Aspect John Clauser Anton Zeilinger

Spin Measurement of Single Electrons

Recall the ket notation for vectors |ψ〉 =
[
α
β

]
∈ C2. The bra notation 〈φ| = [a b] : C2 → C

denotes the linear functional mapping |ψ〉 7→ 〈φ|ψ〉 = [a b]
[
α
β

]
= aα+bβ. We also denote

〈ψ | = |ψ〉∗ = [α β ] where A∗ = AT is the Hermitian conjugate (i.e. conjugate transpose)

of an arbitrary complex matrix A, satisfying (AB)∗ = B∗A∗.

Denote by S3 the set of unit vectors in C2. These represent spin states of electrons

(our favourite examples of qubits, i.e. quantum bits). Thus S3 is the set of all |ψ〉 ∈ C2

satisfying ∣∣|ψ〉∣∣2 = 〈ψ |ψ〉 = [α β]
[
α
β

]
= |α|2 + |β|2 = 1.

In order for Alice to measure the spin of an electron in spin state |ψ〉 ∈ S3, she first chooses

an orthonormal basis of C2, i.e. a pair of vectors |+A〉, |−A〉 ∈ S3 satisfying

〈+A |+A〉 = 〈−A |−A〉 = 1, 〈+A |−A〉 = 〈−A |+A〉 = 0.

(This amounts to choosing an axis or direction in R3 with respect to which she measures the

spin. This connection is explained later as we don’t need it now.) The two states |+A〉 and

|−A〉 are Alice’s designated ‘up’ and ‘down’ spin states, respectively. The spin measurement

yields a single classical bit of information, ‘up’ or ‘down’. These outcomes are observed with

probabilities |〈+A |ψ〉|2 and |〈−A |ψ〉|2 respectively, according to Born’s Rule. Immediately

upon measurement, the spin state of her electron collapses into the corresponding state

in which it was observed, i.e. |+A〉 or |−A〉; and subsequent measurements (with respect

to the same basis) will yield the same outcome as before. A little algebra shows that

|〈+A |ψ〉|2 + |〈−A |ψ〉|2 = 1, as required for probabilities of complementary events.
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Spin Measurement of EPR Pairs

Consider an EPR pair of electrons e1 and e2 in the joint spin state

1√
2
(|00〉+ |11〉) = 1√

2
|0〉⊗|0〉+ 1√

2
|1〉⊗|1〉.

Here, I denote the standard basis of C2 by |0〉 =
[
1
0 ], |1〉 =

[
0
1 ]. These are the same as the

eigenstates |+z〉, |−z〉 for measurement in the vertical direction. If one of the two electrons

is measured in the vertical direction, it has 50% chance of being detected in a spin ‘up’

state; and a 50% chance of being found in the spin ‘down’ state; but at that instant it is

known that the other electron will be found to be in that same spin state if measured.

Alice has taken e1, and Bob has taken e2, to far distant locations. They have taken care

not to disturb their electrons, as any interaction with the environment will result in loss of

entanglement. In order for Alice and Bob to utilize such an EPR pair in their strategy for

the CHSH game, our first concern is: If Alice and Bob measure their respective electrons

e1 and e2 separately, using different bases which they chosen independently, what is the

probabity that they obtain the same result (‘up’ or ‘down’) for their spin measurements?

We will show that this probability is simply |〈+A |+B〉|2.

Before proceeding with our proof of this simple and satisfying formula, observe that

|〈+A |+B〉|2 ∈ [0, 1] as required for a probability. Note the simplicity of this formula,

which (surprisingly or not) is independent of the original choice of state of the electron

pair e1, e2 (as long as e1 and e2 are maximally entangled). Especially we note that it

is symmetric since |〈+A |+B〉| = |〈+B |+A〉| = |〈+A |+B〉|. Why should this symmetry

hold? If Alice measures before Bob, then e1 (originally in the state |ψ1〉 = 1√
2(|0〉 + |1〉))

collapses instantly into her observed eigenstate (either |+A〉 or |−A〉, each with certain

probabilities); and then by virtue of entanglement, Bob’s electron e2 is in that same state

(|+A〉 or |−A〉). Bob’s measurement will then put e2 into one of his base states (either |+A〉
or |−A〉, again with certain probabilities), but Alice’s electron e1 (which is now disentangled

from Bob’s electron e2) will remain in state |+A〉 or |−A〉. The precise sequence of events

depends on who measured first, but the final outcome, including the probability of Alice

and Bob agreeing, is the same. This symmetry is expected because, as we know from

special relativity, different inertial observers will not always disagree on who (Alice or

Bob) did their measurement first. However, there is no way for other inertial observers to

test whether Alice ‘altered’ e2 or Bob ‘altered’ e1, as those electrons have been shielded

from the environment. We do not find any contradiction here between the predictions of

quantum mechanics and the predictions of special relativity.

So let us proceed to prove the probability formula, assuming Alice measures first.

Alice uses her preferred orthonormal basis |+A〉, |−A〉, and Bob uses his basis |+B〉, |−B〉
chosen independently. Consider the possibilities for Alice’s measurement.
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• Alice holds e1, initially in state |ψ1〉. She measures it using her basis |+A〉, |−A〉, and

finds e1 to be in state |+A〉 with probability |〈+A |ψ1〉|2. In this case, Bob’s electron

e2 will also be in state |+A〉, by virtue of quantum entanglement. The conditional

probability that Bob also finds e2 to be in his spin ‘up’ state |+B〉 (given Alice’s

measurement), is |〈+B |+A〉|2. So the probability that both Alice and Bob find their

electron to be spin ‘up’ is |〈+A |ψ1〉|2|〈+B |+A〉|2.

• Alice measures e1 and finds it to be in state |−A〉 with probability |〈−A |ψ1〉|2. In this

case, Bob’s electron e2 will also be in state |−A〉, by virtue of quantum entanglement.

The conditional probability that Bob also finds e2 to be in his spin ‘down’ state |−B〉
(given Alice’s measurement), is |〈−B |−A〉|2. So the probability that both Alice and

Bob find their electron to be spin ‘down’ is |〈−A |ψ1〉|2|〈−B |−A〉|2.

So the total probability that Alice and Bob agree on the spin direction for their individual

measurements (i.e. both up or both down) is

Pr(Alice and Bob agree) = |〈+A |ψ1〉|2|〈+B |+A〉|2 + |〈−A |ψ1〉|2|〈−B |−A〉|2.

However,

|〈+B |+A〉|2 = 1− |〈−B |+A〉|2 = |〈−B |−A〉|2 = |〈+A |+B〉|2,

so
Pr(Alice and Bob agree) =

(
|〈+A |ψ1〉|2|+ |〈−A |ψ1〉|2

)
|〈+A |+B〉|2

= |〈+A |+B〉|2

as claimed.

Finally, observe that if Alice and Bob choose identical bases, they will always agree on

the observed spin (both say ‘up’ or both say ‘down’). This is clear from our description of

the experiment. Moreover, our formula gives the probability of agreement as |〈+A |+A〉|2 =

1 in this case. Or if Bob’s basis is the reversal of Alice’s basis (i.e. |+B〉 = |−A〉 and |−B〉 =

|+A〉) then clearly they will disagree on the spin measurement of their electrons. This is

predicted by our formula, which gives the probability of agreement as |〈+A |−A〉|2 = 0.

Using Entanglement to Succeed at the CHSH Game

Alice has two choices of basis:

• If Alice learns x = 0 from the referee, she uses the basis

|+A0
〉 =

[
1
0

]
, |−A0

〉 =
[
0
1

]
.

• If Alice learns x = 1 from the referee, she uses the basis

|+A1
〉 = 1√

2

[
1
1

]
, |−A1

〉 = 1√
2

[
1
−1
]
.

Similarly, Bob has two choices of basis:

• If Bob learns y = 0 from the referee, he uses the basis

|+B0
〉 =

1√
4+2
√

2

[ −1
1+
√
2

]
, |−B0

〉 =
1√

4+2
√

2

[
1+
√
2

1

]
.
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• If Bob learns y = 1 from the referee, he uses the basis

|+B1
〉 =

1√
4+2
√

2

[
1

1+
√
2

]
, |−B1

〉 =
1√

4+2
√

2

[
1+
√
2

−1
]
.

At the start of each round of the CHSH game, Alice and Bob load up their matched

electrons in their Stern-Gerlach devices, oriented to measure with respect to the bases Ax
and By respectively, as designed above. Each of them detects the spin of their electron

to be ‘+’ or ‘−’ with respect to the selected basis. Each responds with ‘+’ or ‘−’ to the

referee, exactly as found by their measuring device. The probability that they agree is

easily calculated to be

|〈+Ax
|+By

〉|2 =

{
2+
√
2

4 , if (x, y) ∈ {(0, 0), (0, 1), (1, 0)};

1− 2+
√
2

4 , if (x, y) = (1, 1).

According to the rules of the CHSH game, this means their probability of winning is
2+
√
2

4 ≈ 85.4% on each round.

Further work of Tsirelson shows that this success rate is the best that can be achieved

by any such experiment using the limitations of quantum mechanics as we know it. And

some have suggested that we could do even better at the CHSH game if the universe turns

out to be even stranger than we think (as some alternative theories suggest). . . but that

appears to be pure speculation.

Pauli Spin Matrices and Axes of Spin Measurement

Recall the three basic Pauli spin operators

σx =
[
0
1

1
0

]
, σy =

[
0
i
−i
0

]
, σz =

[
1
0

0
−1
]
,

each of which gives an isometry S3 → S3 (i.e. unitary transformation). Their eigenstates

(spin ‘up’ and ‘down’ states) are

|+x〉 = 1√
2

[
1
1

]
, |−x〉 = 1√

2

[
1
−1
]
;

|+y〉 = 1√
2

[
1
i

]
, |−y〉 = 1√

2

[
1
−i
]
;

|+z〉 =
[
1
0

]
, |−z〉 =

[
0
1

]
respectively. Thus σx|+x〉 = |+x〉 and σx|−x〉 = −|−x〉; and similarly for the other

two operators. Given an arbitrary unit vector n = (nx, ny, nz) (so nx, ny, nz ∈ R with

n2x + n2y + n2z = 1), there is a corresponding spin operator

n · σσσσ = nxσx + nyσy + nzσz =

[
nz nx−iny

nx+iny −nz

]
where we have used the notational convenience σσσσ = (σx, σy, σz). Note that each of the spin

matrices is a traceless Hermitian matrix. (‘Traceless’ means its trace is zero, where the

trace is the sum of the diagonal entries. ‘Hermitian’, or ‘self-adjoint’, means that σ∗ = σ.)
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Each spin matrix is diagonalizable with eigenvalues +1 and −1; and it has a corresponding

orthonormal basis of eigenvectors, called eigenstates.

The four bases of type A0, A1, B0, B1 which played such a crucial role in the Bell

experiment described above, are the bases of eigenstates of the Pauli operators n · σσσσ as n

ranges over the four unit vectors

(0, 0, 1), (1, 0, 0), 1√
2
(1, 0, 1), 1√

2
(1, 0,−1) ∈ R3.

These four choices of n are used to specify the physical orientation of the axes in R3 when

using a Stern-Gerlach apparatus to measure the electron spin. These vectors all lie in the

xz-plane, as a choice of convenience so that the resulting Pauli spin matrices have real

entries, but this feature is not essential. Note that the angles between these four physical

axes are spaced at angles of 45◦, whereas the corresponding eigenvectors are spaced at

angles of 22.5◦; e.g. |−B0
〉 =

[
cos 22.5◦

sin 22.5◦

]
. This echoes our discussion in class about spin

vectors move around a circle at half their rate as their physical counterparts.
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