
The Basel Problem

Evaluation of ζ(2) =
∑∞
n=1

1
n2 was a problem that eluded the Bernoullis. The

identity ζ(2) = π2

6 is generally attributed to Euler, who supplied an heuristic proof for

this identity (given in my handout ‘Needles and Numbers’ (http://ericmoorhouse.org

/handouts/needles and numbers.pdf)). Basel, Switzerland, home to Euler and the Ber-

noullis, gives its name to this problem. You will note that Euler’s argument, while ele-

mentary, has a gap (later filled by the Weierstrass Factorization Theorem). An alternative

to Euler’s elegant approach uses Fourier analysis. But while many different proofs of Eu-

ler’s identity are now known, many are still interested in the challenge of finding the most

elementary proof available.

Recently, the ‘lighthouse’ proof has been offered as the most elementary proof yet, and

the one which most compellingly finds a connection between ζ(2) and geometric circles; see

https://www.youtube.com/watch?v=d-o3eB9sfls . Their proof provides an elementary

argument; yet at the crucial step, a careful argument is required to express the limit

correctly. The video omits the rigorous argument at this step (which I will provide below),

relying on graphics to convince the viewer of the validity of the necessary limit. Note that

at certain key steps of the argument, the video replaces algebraic identities with synthetic

arguments from plane geometry. (Such arguments rely on statements about congruence

of angles and line segments, in place of algebraic identities.) I will replace these synthetic

constructions with algebraic formulas; so without sacrificing the elementary nature of the

argument, I will not need to cite basic theorems from synthetic plane geometry. (Of course

in doing so, I will sacrifice the charm of using arguments from synthetic plane geometry.)

For each positive integer n, we denote ζn = e2πi/n, a complex primitive n-th root of

unity. (This notation is standard; and hopefully it will not be confused with our notation

for the Riemann zeta function ζ(s), which is also standard. Note that ζ(s) will not be

shown with any subscripts.)

We challenge the reader to verify that for every positive integer N ,

N∑
k=1

1

|1− ζ2k−14N |2
=
N2

2
.

Note that the values ζ2k−14N are selected vertices of a regular 4N -gon inscribed in the unit

circle |z| = 1 in C; but we only use one-quarter of the vertices, these being alternate

vertices on the semicircle lying in the upper half-plane. This observation is the key linking
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our exposition to the version appearing in the video. In fact we do not require the identity

for all positive integers N ; it suffices to consider an unbounded sequence of N -values. And

so, just as in the video, we consider only the powers of two, namely N = 2n−1; and we

prove the identity only in this special case:

Theorem. For every positive integer n, we have
2n−1∑
k=1

1

|1− ζ2k−12n+1 |2
= 22n−3.

Proof. We denote wn =
∑N
k=1

1

|1−ζ2k−1
4N

|2
where N = 2n−1, n > 1. For n = 1, we have

ζ4 = i and the sum has a single term w1 = 1
|1−i|2 = 1

2 . The identity holds in this case.

Now observe that wn = 1
2

∑2N
k=1

1

|1−ζ2k−1
4N

|2
and evaluate by induction:

wn+1 = 1
2

2N∑
k=1

1

|1− ζ2k−18N |2
= 1

2

N∑
k=1

1

|1− ζ2k−18N |2
+ 1

2

2N∑
k=N+1

1

|1− ζ2k−18N |2

= 1
2

N∑
k=1

(
1

|1− ζ2k−18N |2
+

1

|1− ζ2N+2k−1
8N |2

)
= 1

2

N∑
k=1

(
1

|1− ζ2k−18N |2
+

1

|1 + ζ2k−18N |2

)
.

Now using |z|2 = zz we obtain the identity 1
|1−z|2 + 1

|1+z|2 = 2(1+|z|2)
|1−z2|2 , from which we easily

obtain wn+1 = 4wn. Using the initial value w1 = 1
2 together with this recurrence relation

gives wn = 22n−3 as required.

Noting that

|1− ζ2k−14N |2 = (1− ζ2k−14N )(1− ζ2k−14N ) = 2− ζ2k−14N − ζ2k−14N

= 2
(
1− cos (2k−1)π

2N

)
= 4 sin2 (2k−1)π

4N ,
we obtain

Corollary. For every positive integer n, denoting N = N(n) = 2n−1, we have
N∑
k=1

1

N2 sin2 (2k−1)π
4N

= 2.

Now as n→∞, N →∞ and for each fixed k,

1

N2 sin2 (2k−1)π
4N

=
16

(2k − 1)2π2
+O(N−2).

Meanwhile the number of terms also tends to infinity, so the Corollary apparently gives

∞∑
k=1

16

(2k − 1)2π2
= 2, i.e. 1 +

1

32
+

1

52
+

1

72
+

1

92
+ · · · = π2

8
.
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We are almost there! Recall the Euler factorization

ζ(2) =
∏
p

1

1− 1
p2

=
1

1− 1
22

∏
p>2

1

1− 1
p2

=
4

3

(
1 +

1

32
+

1

52
+

1

72
+

1

92
+ · · ·

)
.

Combining this with the previous identity yields ζ(2) = π2

6 as required.

But not so fast! The alert student will observe that some care is needed in justifying

our value for the limit as N → ∞ since both the number of terms, and the values of the

individual terms, depends on N . In general, sloppiness can lead to nonsensical results!

For example, let’s evaluate limn→∞
∑n
k=1

k2

n3 . For each fixed k, the individual terms of the

sum tends to zero; then we take the sum of n zeroes, giving zero for the final limit, right?

Wrong! Actually,
∫ 1

0
x2 dx = limn→∞

∑n
k=1

k2

n3 = limn→∞
n(n+1)(2n+1)/6

n3 = 1
3 .

But with the limit at hand, no such problem will arise if we are just a little careful.

We’ll use

Lemma. For all x 6= 0, we have 1− x2

6 6 sin x
x 6 1.

Proof. Since all terms are even functions of x, it suffices to consider x > 0. Define

f(x) = sinx− x+ x3

6 , so that

f ′(x) = cosx− 1 + x2

2 , f ′′(x) = x− sinx, f ′′′(x) = 1− cosx

and f (n)(0) = 0 for n = 0, 1, 2, 3. Clearly f ′′′(x) > 0 for all x, so f ′′ is increasing, so f ′′ > 0

on (0,∞), so f ′ is increasing on (0,∞), so f ′ > 0 on (0,∞), so f > 0 on (0,∞). Our upper

and lower bounds for sin x
x on (0,∞) follow from f ′′ > 0 and f > 0 respectively.

Let’s define

SN =
N∑
k=1

1

N2 sin2 (2k−1)π
4N

.

We will apply the Lemma to each term of this sum, where x = (2k−1)π
4N ∈ (0, π2 ). On the

interval (0, π2 ), we have 1− x2

6 > 0 and so

1 6
x

sinx
6

1

1− x2

6

< 1 + x2

6

and

1 6
x2

sin2 x
<
(

1 + x2

6

)2
< 1 + x2.
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Substituting x = (2k−1)π
4N ∈ (0, π2 ), this yields

16

(2k − 1)2π2
6

1

N2 sin2 (2k−1)π
4N

6
1

N2
+

16

(2k − 1)2π2

for k = 1, 2, 3, . . . , N . Summing over all k yields

16

π2

N∑
k=1

1

(2k − 1)2
6 SN 6

1

N
+

16

π2

N∑
k=1

1

(2k − 1)2
.

By the Squeeze Theorem, we have SN → 16
π2

∑N
k=1

1
(2k−1)2 . From here we obtain Euler’s

formula ζ(2) = π2

6 as before.

Finally, we consider the formula for general N . Let us denote

f(z) =
2N∑
k=1

ζ2k−14N z

(z − ζ2k−14N )2
.

Note that the values ζ2k−14N (for k = 1, 2, . . . , 2N) are precisely the complex roots of z2N +1

and by symmetry we have f(ζ24Nz) = f(z) for all z. The least common denominator of

the terms is (z2N + 1)2, leading is to consider the polynomial

g(z) = (z2N + 1)2f(z) ∈ C[z]

of degree at most 4N − 1. Since g(ζ24Nz) = g(z), it follows that g(z) must be a polynomial

in z2N . It necessarily must have the form g(z) = a + bz2N for some a, b ∈ C. Since

g(0) = f(0) = 0, we have a = 0. To determine the coefficient b, we note that

bz2N = (z2N + 1)2f(z) =
2N∑
k=1

ζ2k−14N z
( z2N + 1

z − ζ2k−14N

)2
in which we require only the coefficient of z2N on the right side. To simplify notation, we

abbreviate ω = ζ2k−14N in the k-th term of the sum. This term has the form

ωz
(z2N + 1

z − ω

)2
= ωz(z2N−1 + ωz2N−2 + ω2z2N−3 + ω3z2N−4 + · · ·+ ω2N−2z + ω2N−1)2

in which the coefficient of z2N is clearly ω·2Nω2N−1 = −2N . Since there are 2N terms

in the sum, we have b = −4N2. Evaluating at z = 1 gives 4f(1) = g(1) = −4N2 so

f(1) = −N2. However,

f(1) =
2N∑
k=1

ζ2k−14N

(1− ζ2k−14N )2
=

2N∑
k=1

1

(1− ζ2k−14N )(ζ4N
2k−1− 1)

=
2N∑
k=1

1

|1− ζ2k−14N |2
= 2

N∑
k=1

1

|1− ζ2k−14N |2
.

This proves the claimed identity.
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