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The Baire Category Theorem was proved by René-Louis Baire in his PhD dissertation

in 1899. It is a powerful tool for showing that a certain set is ‘large’ when other approaches

seem inadequate even to show the given set is nonempty. After presenting and proving

the theorem itself, we give two reasonably standard applications—one in real analysis, and

one in group theory.

1. Complete Metric Spaces

We begin with a characterization of complete metric spaces. Let X be a metric space

with distance function d : X ×X → [0,∞). The diameter of a bounded nonempty subset

A ⊂ X is defined as

diam(A) = sup
{
d(a, b) : a, b ∈ A

}
.

If A is unbounded, then diam(A) =∞. Also if A is empty, we may define its diameter to

be zero. Note that in a metric space, diamBε(x) 6 diamBε(x) 6 2ε.

1.1 Lemma. Consider a chain K1 ⊇ K2 ⊇ K3 ⊇ · · · of nonempty closed sets in a

complete metric space X, with diam(Kn)→ 0 as n→∞. Then
⋂
nKn 6= ∅.

Proof. Choose points xn ∈ Kn. For all m > 0 we have

d(xn+m, xn) 6 diam(Kn)→ 0 as n→∞

so the sequence x1, x2, x3, . . . is Cauchy; it must converge to a point x ∈ X. Clearly x ∈ Kn

for all n and so x ∈
⋂
nKn .

The latter result has a valid converse, which we will not need here: In a metric space,

if every chain K1 ⊇ K2 ⊇ K3 ⊇ · · · with diam(Kn) → 0 has nonempty intersection, then

the space is complete. Note that the condition diam(Kn) → 0 is essential, since in R we

have
⋂
n[n,∞) = ∅.

We will also use the following, which is easily proved.

1.2 Lemma. Every closed subspace of a complete metric space is complete.

1



Next, some more preliminaries for general topological spaces.

2. Density

Recall: If A is a subset of a topological space X, the closure of A (denoted A) is the

smallest closed set containing A; the interior of A (denoted A◦) is the largest open set

contained in A. It is not hard to see that X ................A = X ................(A◦). Note that in a metric space,

we have Bδ(x) ⊆ Bε(x) whenever δ < ε.

We say A is dense in X, or simply dense, if A = X, i.e. if every nonempty open set

contains a point of A. For example, Q is dense in R. We say A is somewhere dense if its

closure contains a nonempty open set; equivalently, A has nonempty interior, i.e. A ◦ 6= ∅.

If the closure of A has empty interior, i.e. A ◦ = ∅, we say that A is nowhere dense. Thus

Q ∩ [0, 1] is somewhere dense in R, whereas
{

1
n : n = 1, 2, 3, . . .

}
is nowhere dense. If A

has nonempty interior, then A is somewhere dense, since A ◦ ⊇ A◦ 6= ∅.

3. Baire Category

Let X be a topological space. We say X is of first category if X is a countable union of

nowhere dense sets. Otherwise, X is of second category . For example, Q is of first category,

since it is a countable union of singleton sets, each of which is nowhere dense in Q. The

first result is that this cannot happen in a complete metric space like R.

3.1 Baire Category Theorem. Let X be a complete metric space. Then X is of

second category. That is, if X = A1 ∪ A2 ∪ A3 ∪ · · ·, then for some n, the set An is

somewhere dense in X.

Proof. Suppose, on the contrary, that each An is nowhere dense

inX. We recursively construct a sequence of points x1, x2, x3, . . .

in X as follows. First choose x1 /∈ A1; this is easy since A1 has

empty interior and so must be a proper subset of X. There exists

ε1 > 0 such that Bε1(x1) ∩ A1 = ∅. Without loss of generality,

we have ε1 < 1.

Set U1 = Bε1/2(x1), so that U1 ⊆ Bε1(x1) and U1∩A1 = ∅.

Since U1 is a nonempty open set, it cannot be contained in A2 .

So we can choose x2 ∈ U1
................A2 . The latter set is open, so there

exists ε2 > 0 such that Bε2(x2) ⊆ U1
................A2 . Without loss of

generality, ε2 <
1
2 .

Set U2 = Bε2/2(x2), so that U2 ⊆ Bε2(x2) and U2∩A1 = ∅.

Since U2 is a nonempty open set, it cannot be contained in A3 .

Choose x3 ∈ U2
................A3 . Again, U2

................A3 is open, so there exists ε3 > 0 such that Bε3(x3) ⊆
U2

................A3 . We may assume that ε3 <
1
3 .
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Continuing in this way, we obtain a sequence of points x1, x2, x3, . . . and open balls

Un = Bεn/2(xn) where 0 < εn <
1
n , satisfying

Un+1 = Bεn+1/2(xn+1) ⊆ Bεn+1
(xn+1) ⊆ Un

................An+1 ⊆ Un = Bεn/2(xn)

and diam(Un) 6 εn
2 < 1

2n . By Lemma 1.1, there exists x ∈
⋂
n Un . But x ∈ An for some

n, and x ∈ Un ∩An, a contradiction.

3.2 Corollary. Let X be a complete metric space. Then a countable intersection

of dense open subsets of X is again dense. That is, if U1, U2, U3, . . . are dense open

subsets of X, then the intersection D = U1 ∩ U2 ∩ U3 ∩ · · · satisfies D = X.

Proof. Let x ∈ X and ε > 0. We must show that Bε(x) ∩D 6= ∅. Define

Y = Bε/2(x) ⊆ Bε(x);

we will show that in fact Y ∩D 6= ∅. By Lemma 1.2, Y is a complete metric space. Set

An = Y ................Un , so that An is closed both in X and in Y . We first verify that An is nowhere

dense in Y .

Suppose An is somewhere dense in Y . Then there exists y ∈ Y and δ > 0 such that

Bδ(y) ∩ Y ⊆ An ∩ Y = An .

This implies that Bδ(y) ∩ (Y ................An) = ∅. But y ∈ Y = Bε/2(x), so there exists a point

z ∈ Bδ(y)∩Bε/2(x). Now the open set Bδ(y)∩Bε/2(x) is nonempty, so it contains a point

of the dense set Un, i.e. there exists a point

z′ ∈ Un ∩Bδ(y) ∩Bε/2(x) ⊆ Un ∩Bδ(y) ∩ Y ⊆ Un ∩An = ∅,

a contradiction.

Thus An is nowhere dense in Y as claimed. By Theorem 3.1, there exists a point

u ∈ Y ................

⋃
n

An =
⋂
n

(Y ................An) =
⋂
n

(Y ∩ Un) = Y ∩
⋂
n

Un = Y ∩D

as required.

As an application of Theorem 3.1, let X = R or R2. Suppose we colour all the points

of X using a countable (finite or infinite) set of colours. We conclude that for some n, the

set of points of colour n is somewhere dense in X.
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As an application of Corollary 3.2, let U` = R2 ................`, the subset of the Euclidean plane

formed by deleting a line `. Note that U` is a dense open subset of the plane. If we take a

countable collection L of lines in the plane, then the countable intersection D =
⋂
`∈L U`

must be dense in the plane. This is not so trivial when L is (countably) infinite, in which

case D may not actually be open.

4. Nowhere Differentiable Functions

Corollary 3.2 is typically used to give nonconstructive proofs of existence for various patho-

logical objects, for example to show the existence of a function f : [0, 1] → R which

is everywhere continuous but nowhere differentiable. The first explicit examples of such

functions were given by Weierstrass (1872); an example of such a function, illustrated by

Monge-Álvarez [A], is shown here:

Prior to the examples of Weierstrass, it was generally thought that continuous functions

were differentiable except at isolated points. If one wants only to show the existence of

a continuous but nowhere-differentiable function, it turns out to be easier to prove the

stronger statement (see Theorem 4.2 below) that in the sense of Baire category, most

continuous functions R→ R are nowhere differentiable. For convenience, here we consider

just continuous functions [0, 1]→ R; but the case for domain R works almost as easily.

Let V = C([0, 1]), the real vector space of all continuous functions [0, 1] → R. For

f ∈ V , define ||f || = sup
{
|f(x)| : x ∈ [0, 1]

}
. Note that the supremum exists and is finite,

since [0, 1] is compact. Then || · || is a norm on V , and V is a complete metric space (i.e.

a Banach space). For m,n > 1, define Am,n to be the set of all f ∈ V such that for some

x ∈ [0, 1], we have

(*)

∣∣∣∣f(y)− f(x)

y − x

∣∣∣∣ 6 m whenever 0 < |y − x| < 1
n .
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4.1 Lemma.

(a) If f is differentiable at some point x ∈ [0, 1], then f ∈ Am,n for some m,n > 1.

(b) Each Am,n is closed and nowhere dense in V .

Proof. (a) Suppose f is differentiable at x ∈ [0, 1]. There exists n > 1 such that∣∣∣∣f(y)− f(x)

y − x
− f ′(x)

∣∣∣∣ < 1 whenever 0 < |y − x| < 1
n .

For all such y, we have
∣∣ f(y)−f(x)

y−x
∣∣ 6 m where m =

⌈
|f ′(x)|+ 1

⌉
.

(b) To show that Am,n is closed in V , consider a sequence f1, f2, f3, . . . in Am,n and

suppose that fk → f ∈ V . Since f is a uniform limit of continuous functions fk (recall

that the topology of V is defined by the sup norm), f is itself continuous. By definition,

for each k there exists xk ∈ [0, 1] such that∣∣∣∣fk(y)− fk(xk)

y − xk

∣∣∣∣ 6 m whenever 0 <
∣∣y − xk∣∣ < 1

n .

By the Bolzano-Weierstrass Theorem, the sequence x1, x2, x3, . . . has a convergent subse-

quence. We may suppose (after replacing the sequence (xk)k by this convergent subse-

quence, if necessary) that xk → x ∈ [0, 1]. Now suppose that 0 < |y − x| < 1
n . Then there

exists K such that 0 < |y − xk| < 1
n for all k > K; and for all such k we have

(†)
∣∣∣∣fk(y)− fk(xk)

y − xk

∣∣∣∣ 6 m.

Now as k →∞ we have

|fk(xk)−f(x)| 6 |fk(xk)−f(xk)|+ |f(xk)−f(x)| 6 ||fk−f ||+ |f(xk)−f(x)| → 0

since fk → f , xk → x and f is continuous; so letting k → ∞ in (†) we obtain (*), i.e.

f ∈ Am,n. Thus Am,n is closed in V as required.

Now it is easy to see that Am,n ⊂ V is nowhere dense. For otherwise, there is an open

ball Bδ(f) ⊆ Am,n = Am,n for some f ∈ V and δ > 0. In this case there exists x ∈ [0, 1]

such that (*) holds. Consider the continuous function g ∈ V defined by

g(y) = f(y) + δ
2 sin

[
4m
δ (y − x)

]
so that ||g − f || 6 δ

2 . However if g ∈ Am,n then

δ

2

∣∣∣∣∣ sin
[
4m
δ (y − x)

]
y − x

∣∣∣∣∣ 6 m whenever 0 < |y − x| < 1
n ;
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and letting y → x we obtain 2m 6 m, a contradiction. Thus Am,n is nowhere dense in V

as claimed.

In view of (b), Theorem 3.1 shows that the countable union
⋃
m,nAm,n is a proper

subset of V ; therefore there exists f ∈ V such that f is not contained in any of the sets

Am,n . By (a), such a function f must be nowhere differentiable.

Let Um,n = V ................Am,n . Then Um,n is open. Also Um,n is dense since

Um,n = V ................Am,n = V ................A◦m,n = V,

using the fact that A◦m,n = (Am,n)◦ = ∅. By Corollary 3.2, the countable intersection⋂
m,n Um,n is also dense in V . But

⋂
m,n Um,n consists of nowhere differentiable functions.

We have:

4.2 Theorem. The set of nowhere differentiable functions is dense in V .

5. Infinite Permutation Groups

Much of this topic is drawn from Cameron [C] who points out (see [C, §2.2]) that for

model-theoretic reasons, many fundamental questions about permutations of an infinite set

Ω reduce to the case |Ω| = ℵ0. So without wasting time, we will take Ω = N = {1, 2, 3, . . .}
and G = SymN, the group of all permutations of N, i.e. the set of all bijections N → N
under composition. This group has cardinality

|G| = |R| = |C| = 2ℵ0

where C is the Cantor space consisting of all sequences (a1, a2, a3, . . .) with each ai ∈ {0, 1}.
To see this, first note that |G| > |C| = 2ℵ0 since we have an injection

C → G, (a1, a2, a3, . . .) 7→ (1, 2)a1(3, 4)a2(5, 6)a3(7, 8)a4 · · · .

Here we use cycle notation for permutations; thus the permutation on the right maps

2k−1 7→
{

2k−1, if ak = 0;
2k, if ak = 1;

2k 7→
{

2k, if ak = 0;
2k−1, if ak = 1.

On the other hand, |G| 6 |R| = 2ℵ0 since we have an injection

G→ R, f 7→ f(1) +
1

f(2) + 1
f(3)+ 1

f(4)+ 1
f(5)+···

;
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here we use the fact that continued fraction expansions of real numbers are unique (at

least in the case of nonterminating expansions).

Note that G has a subgroup of order n! permuting {1, 2, 3, . . . , n} and fixing every

k > n; this subgroup is usually denoted Sn. Also G has a subgroup S∞ < G consisting of

all permutations f ∈ G of finite support , i.e.

S∞ = {f ∈ G : for some N , f(k) = k whenever k > N} =
∞⋃
n=1

Sn.

Since S∞ is a countable union of finite sets, S∞ is countably infinite:

|S∞| = ℵ0.

This says that S∞ is a relatively small subgroup of G; evidently most permutations of

N have infinite support. By Lagrange’s Theorem, every subgroup H 6 G satisfies 2ℵ0 =

|G| = [G : H]|H|, so either the order or the index of H (possibly both) must equal 2ℵ0 .

(The product of two infinite cardinals is equal to their maximum.) In our case S∞ must

have index 2ℵ0 : there are 2ℵ0 cosets of S∞ in G = SymN.

We introduce an ultrametric on G as we have seen how to do on any set of infinite

sequences: given f 6= g in G define

d0(f, g) = 2−n where n is the smallest integer such that f(n) 6= g(n);

also define d0(f, f) = 0. Since f(k) = g(k) iff (g−1◦f)(k) = k, we immediately have

d0(f, g) = d0(g−1◦f, ι) = d0(f−1◦g, ι)

where ι ∈ G is the identity, i.e. ι(k) = k for all k ∈ N. As nice as this is, we can do better:

d(f, g) = max{d0(f, g), d0(f−1, g−1)}

defines a nicer metric on G which satisfies

5.1 Theorem. The space G is complete with respect to the metric d.

The proof is left as an exercise (see [C, §2.4]). We remark that the space G is not complete

for the metric d0; for example the sequence

ι, (1, 2), (1, 2, 3), (1, 2, 3, 4), . . .

defined by f1 = ι and fn = (1, 2, . . . , n) for n > 2 satisfies

d0(fm, fn) = 2−m whenever m < n
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giving a Cauchy sequence for d0, without any limit in G. (The sequence converges in NN to

the unilateral shift k 7→ k+1, but this is not a permutation of N.) The problem does not

arise with the new metric d since the sequence is no longer Cauchy; indeed d(fm, fn) = 1
2

whenever m 6= n since f−1m (1) = m whereas f−1n (1) = n. Nevertheless the two metrics d0
and d define the same topology on G (see [C, §2.4]). Rather than formally proving this,

we give an example expressing an open ball for d0 in terms of open balls for d:{
f ∈ G : d0(f, (1, 3, 5)) < 1

2

}
=
{
f ∈ G : f(1) = 3 and f(2) = 2

}
=

∞⋃
k=3

{
f ∈ G : f(1) = 3, f(k) = 1 and f(2) = 2

}
=

∞⋃
k=3

{
f ∈ G : f(1) = 3, f−1(1) = k and f(2) = 2

}
=
{
f ∈ G : d(f, (1, 3)) < 1

2

}
∪
∞⋃
k=4

{
f ∈ G : d(f, (1, 3, k)) < 1

2

}
and vice versa:{

f ∈ G : d(f, (1, 3, 5)) < 1
2

}
=
{
f ∈ G : f(1) = 3, f(2) = 2 and f(5) = 1

}
=
⋃
k>4

⋃
`>4
` 6=k

{
f ∈ G : f(1) = 3, f(2) = 2, f(3) = k, f(4) = ` and f(5) = 1

}
=
⋃
s∈S

{
f ∈ G : d0(f, s) < 1

32

}
where

S =
{

(1, 3, 5), (1, 3, 4, 5
)
} ∪

{
(1, 3, k, `, 4, 5) : k, ` > 6 and k 6= `

}
∪
{

(1, 3, k, 5), (1, 3, k, 4, 5) : k > 6
}

∪
{

(1, 3, 5)(4, `), (1, 3, 4, `, 5) : ` > 6
}
.

Similar relations show that sets of the form {f ∈ G : f(k) = `} where k, ` ∈ N form

a subbasis for the topology of G; and basic open sets are obtained by instead imposing

finitely many conditions f(ki) = `i for i = 1, 2, . . . , n. The group G has the topology of

pointwise convergence: that is, a sequence (fn)n in G converges to f ∈ G iff for every

k ∈ N, we have fn(k)→ f(k) as n→∞. Since N is discrete, this means that for all k ∈ N,

there exists N such that for all n > N , we have fn(k) = f(k). Thus G is homeomorphic to

a subspace of NN (a countable product of countable discrete spaces). Each of our subbasic

open sets is also closed (i.e. clopen) since

{f ∈ G : f(k) = `} = G................

⋃
m 6=`

{f ∈ G : f(k) = m}.

So after intersecting finitely many subbasic open sets, we see that every basic open set is

also clopen.
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5.2 Theorem. G is a topological group for the metric d.

This says that multiplication in G, i.e. the map G×G→ G, (f, g) 7→ f ◦ g, is continuous;

also inversion G→ G, f 7→ f−1 is continuous. The proof is omitted; but see [C, Sec.2.4].

The subgroup S∞ < G is not (topologically) closed; in fact it is dense in G: its closure

is S∞ = G. To see this, let g ∈ G and n > 1; then the basic open neighbourhood{
f ∈ G : f(k) = g(k) for all k 6 n

}
of g contains a point of S∞: simply take N = max{n, g(k) : k 6 n} so there exists

f ∈ SN < S∞ satisfying f(k) = g(k) for all k 6 n. However if H is any subgroup of G,

then its (topological) closure is also a subgroup. To see this, let g, g′ ∈ H, so there exist

sequences (hn)n, (h
′
n)n in H converging to g and g′ respectively; then gg′ = limhnh

′
n ∈ H.

A similar argument works for inverses in H.

5.3 Theorem. Let H and K be closed subgroups of G = SymN and K 6 H. Then

[H : K] 6 ℵ0 iff K contains the stabilizer of some finite subset A ⊂ N, i.e. K ⊇ HA

where

HA = {h ∈ H : h(A) = A} ⊇ {h ∈ H : h(a) = a for all a ∈ A}.

Proof. Assuming that K ⊇ HA, the H-orbit of A, namely

AH = {h(A) : h ∈ H} where h(A) = {h(a) : a ∈ A},

has size |AH | = [H : HA] = [H : K][K : HA] (see, e.g. [C2, p.5]). Since N has only

countably many subsets of size |A|, this implies that [H : K] 6 |AH | 6 ℵ0.

Conversely, suppose we have closed subgroups satisfying K 6 H 6 G = SymN. Since

G is a complete metric space, the closed subgroups H and K are also complete. Suppose

also that [H : K] 6 ℵ0, so that H =
⋃
nKhn where the set of coset representatives

hn ∈ H is countable. Each of the cosets Khn is clopen (closed because K itself is closed,

and multiplication by hn is continuous; but also open, because the complement H................Khn is

the union of the other cosets). By the Baire Category Theorem 3.1, some coset Khn has

nonempty interior. Again, right-multiplying by h−1n (a continuous operation) means that

K itself has nonempty interior; thus K contains an open neighbourhood H ∩ Bδ(k) ⊆ K

for some δ > 0 and k ∈ K. We may suppose k = ι; otherwise ι ∈ k−1Bδ(k) ⊆ K so K also

contains an open neighbourhood of ι in H:

K ⊇ H ∩B1/2n(ι) = H{1,2,3,...,n−1}.

The index [H : K] in Theorem 5.3 is conceivably any cardinality 6 |G| = 2ℵ0 . Now

the Continuum Hypothesis is the assertion that there is no set A satisfying ℵ0 < |A| < 2ℵ0 .
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However, this statement is independent of the usual axioms ZFC of set theory (the Zermelo-

Fraenkel axioms ZF, together with the Axiom of Choice). This means (assuming ZFC is

consistent, as we are generally prone to believe) that one can neither prove nor disprove

the Continuum Hypothesis using the ZFC axioms—this fact is due to the combined work

of Kurt Gödel (1940) and Paul Cohen (1963). Most modern mathematics is founded

upon ZFC and has no use for the Continuum Hypothesis. The following, which would

be a trivial assertion under the Continuum Hypothesis, is actually proved using only the

standard axioms of ZCF, without assuming the Continuum Hypothesis. See [C, p.29] and

[DNT].

5.4 Theorem. For every subgroup H 6 G = SymN, we have either [G : H] 6 ℵ0 or

[G : H] = 2ℵ0 .

The key to proving the following (see [C3]) is again the Baire Category Theorem:

5.5 Theorem. Let G be a primitive permutation group on an infinite set X. Then

G preserves a nontrivial topology on X iff G preserves a filter on X.

Macpherson and Praeger [MP] make further extensive use of topological methods in the

study of infinite permutation groups. A representative result of theirs is:

5.6 Theorem. Let G be a permutation group on N that does not preserve any

nontrivial filter (i.e. the only filters fixed by G are the indiscrete filter {N} and the finite

complement filter). Then G is highly transitive (i.e. for every n > 1, G transitively

permutes the n-subsets of N).
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