
Applications of Series: Two Examples

Students will have seen numerous instances of infinite series representing functions in

Calculus II, and probably in subsequent courses (particularly in differential equations, and

complex analysis). Here we supplement these by sampling a few examples in which power

series arise, but where their critical role is not in representing functions.

1. Counting via Generating Functions

A general sequence a0, a1, a2, . . . ∈ Q is often best studied via its generating function

f(x) =
∞∑

n=0

anx
n ∈ Q[[x]].

For the factorial sequence an = n!, the resulting generating function f(x) =
∑∞

n=1 n!xn is

not much of a function, as we remark below—so we should really call it a generating series;

however the terminology of ‘generating function’ is by now standard, and we will not try

to change it. The following sort of counting problem may be encountered in combinatorics

courses:

(a) Let bn denote the number of ways to divide a deck of n distinct cards into two
nonempty piles, and then to permute (i.e. shuffle) each pile. Find a formula
for bn.

(b) Determine the generating function g(x) =
∑∞

n=0 bnx
n, giving the first few

terms explicitly.

(c) Determine b52 explicitly.

For example with n = 5, we may first divide the deck into piles of size 1+4, 2+3, 3+2 or

4+1, giving

b5 = 1×24 + 2×6 + 6×2 + 24×1 = 72.

Generalizing this argument gives the formula

bn =
n−1∑
k=1

k!(n−k)! .

1

Although the value b52 can be obtained from such a sum, in practice it is easier to use the

generating function approach. Standard arguments for such counting problems in Math

3700 give the generating function

g(x) =
∞∑

n=0

bnx
n =

(∞∑
n=1

n!xn

)2

= x2 + 4x3 + 16x4 + 72x5 + 372x6 + · · · .

(Note that b0 = b1 = 0 since there is no way to obtain two nonempty piles with fewer than

2 cards.) The inner series counts ways to permute (i.e. shuffle) a single nonempty deck

of n cards; and squaring represents the action of first dividing the deck into two piles. A

typical Maple session for this problem is

from which we obtain the value

b52 = 3231860601117677019365998799023223579650519757222376898560000000000

≈ 3.23×1066.

Note that our Maple session defines a variable f rather than a function f(x), as would

typically be done using the Maple command f:=x->sum etc.. The latter would be useful if

at any stage we required function values f(1), f(2), etc.; however these values are undefined.

Indeed the only input where f(a) is defined, is at a = 0. Whatever use we have for f(x),

it is as a formal algebraic expression, not as a function.

2. Signal Processing

Our second example will use coefficients in F2 = {0, 1} rather than in Q or R. Given

a power series

f(x) =
∞∑

n=0

anx
n = a0 + a1x + a2x

2 + a3x
3 + · · · ∈ F2[[x]],

2

it is immediately apparent that we will not be viewing f as a function F2 → F2. (Note

that f(1) is in general not a well-defined element of F2!) So it is not clear in what sense,

if any, one may regard f as a function; fortunately, this question is not an issue for us.

We shall regard the sequence a0, a1, a2, a3, . . . in F2 as a bitstream—a stream of bits of

information representing, possibly, binary information from a digital camera, or a digital

microphone, or a digital satellite transmission. The entire sequence is succinctly repre-

sented by the single algebraic object f(x); and we are interested in transformations of this

bitstream represented by algebraic operations of the form f(x) 7→ m(x)f(x) for a multi-

plier m(x) ∈ F2[[x]]. The effect of such an operation is to scramble the original bitstream;

and combinations of such operations are universally implemented in the practical error

correction of streams of digital information.

Algebraic operations in F2[[x]] of the form we are considering could be easily imple-

mented on a typical computer. However, to devote an entire computer (containing typically

billions of transistors) to such a task would be a serious waste of hardware, since these

tasks are easily accomplished using much simpler electronic circuits dedicated to the task

(with correspondingly huge savings in cost and device sizes, not to mention huge improve-

ments in response time and reliability). These circuits are known as shift registers; and we

consider two varieties of these, arising from forward and backward shifts.

We consider first a simple example of a forward shift register as shown, with input

f(x) =
∑

n anx
n and output f̂(x) =

∑
n bnx

n. The input bits a0, a1, a2, . . . arrive at the

left terminal, one bit per time step; and the bits progress through the register from left to

right as shown, resulting in the output bitstream b0, b1, b2, . . . on the right. Each memory

cell holds a bit for one time step (as measured by a clock) and then passes its contents

through the out-going arrow (or in the case of two output paths, a copy of the bit along

each out-going path); and the cell then accepts the incoming bit arriving from the left.

The node labelled ‘+’ on the right performs addition (mod 2) and instantly returns the

sum of incoming bits to the right as the next output bit. The state of the register at the

first few successive time steps is as shown:

3

4

The state of the register at the instant before the n-th output bit bn appears is

from which we see that bn = an +an−1 +an−3 (with the understanding that a−1 = a−2 =

· · · = 0) so the output stream is represented by

f̂(x) =
∑
n

bnx
n =

∑
n

(an +an−1 +an−3)xn

=
∑
n

anx
n + x

∑
n

an−1x
n−1 + x3

∑
n

an−3x
n−3

= (1+x+x3)f(x).

Note that the exponents in the multiplier 1+x+x3 are determined by the choice of cells

(in this case, cells 0, 1 and 3) which feed into the ‘+’ node.

A backward shift register works similarly but with bits jumping backwards via feedback

loops, instead of forwards, as in the example:

5

Here is the state of such a register at one typical time step: In this case the n-th output

bit will be given by bn = an +bn−3 +bn−4, which we solve to obtain an = bn +bn−3 +bn−4.

The input stream is represented by

f(x) =
∑
n

anx
n =

∑
n

(bn +bn−3 +bn−4)xn

=
∑
n

bnx
n + x3

∑
n

bn−3x
n−3 + x4

∑
n

bn−4x
n−4

= (1+x3 +x4)f̂(x);

in other words,

f̂(x) =
f(x)

1 + x3 + x4
.

Once again, the exponents arising in the denominator 1+x3 +x4 depend on the specific

choice of feedback loops. (Other than the constant term 1, in our example the x3 and

x4 terms arise from the cells 3 and 4 where the feedback loops originate.) Note that the

forward and backward shift registers give implementations of multiplication and division

by specified polynomials in F2[[x]], respectively. To implement multiplication by a rational

function m(x)
m′(x) ∈ F2(x), we may connect two registers in series (a forward shift register

for m(x) and a backward shift register for m′(x)); but in fact a more efficient solution is

available by using a single sequence of cells with specified forward and backward loops.

In the design of effective error-correcting codes, very popular choices are convolutional

codes which combine shift registers as described above, with interleavers and other prim-

itive stream processing units. Such codes are among the best codes available—in other

words they have the highest possible rate of information transfer for a given error-correcting

capability.

Shift registers can also be used to give efficient implementation of the multiplication

and division in finite fields of the form Fq where q = 2e.

6

