
 

Affine Planes:  An Introduction to Axiomatic Geometry 
 

Here we use Euclidean plane geometry as an opportunity to introduce axiomatic systems.  Keep 

in mind that the axiomatic approach is not the only approach to studying geometry or other 

mathematical subjects; and there is some argument that the value of this approach has been 

overrated.  Nevertheless, the axiomatic method in geometry is currently a fixture, thanks to the 

existing curriculum standards. 

 

Informally, a proof of a statement is an argument used to demonstrate the truth of that statement.  

We must acknowledge that every proof, however, relies on assumed notions.  This applies to any 

axiomatic system, whether geometric, algebraic, topological, analytic, or whatever. 

 

 

 

 

 

In studying geometry or any other mathematical subject, therefore, one must start with a choice of 

axioms.  These may be thought of as rules of play.  Just as there are many different games, each 

with its own rules, so there are many types of geometry, each with its own axioms.  No particular 

choice is true, just as the rules of baseball are no more true than the rules of chess.  If one wants to 

play chess, then in order to decide (for example) whether or not a particular move is legal, one 

must refer to the rules of chess; the rules of baseball are irrelevant in this case.  In the same way, 

the statement ‘Given any line ` and any point P not on `, there exists exactly one line through P 

not meeting `’ is true in Euclidean plane geometry, but false in three-dimensional Euclidean 

geometry. 

 

Key ingredients in developing any subject axiomatically include: 

a) undefined notions; 

b) defined notions; 

c) axioms; 

d) statements; 

e) rules of inference; 

f) theorems; 

g) proofs; and 

h) models. 

 

Webster’s dictionary defines ‘point’ in terms of ‘geometry’, and ‘geometry’ in terms of ‘point’.  

While the circular nature of this example may seem comical, it teaches us an important lesson: 

although it is good to define notions in terms of previously defined notions whenever possible, it 

is not always possible to do so; we must begin somewhere with undefined notions.  Typically we 

will regard the notions of ‘point’ and ‘line’ as undefined, and proceed to define other notions in 

terms of them.  For example, a circle (in plane geometry) may be defined as the set of points at 

fixed distance r from a point O; and we then refer to r and O as the radius and center of the circle, 

All that a proof can ever hope to establish is that if  one starts from 
certain assumptions , and applies certain accepted rules of 

inference, then  such-and-such follows as a logical consequence. 



respectively.  This definition of a circle relies on several undefined notions, including ‘point’ and 

‘distance’. 

 

To punt and admit the notions ‘point’ and ‘line’ as undefined may seem like a weakness; but this 

is not only necessary—it is what gives the axiomatic method its strength and generality.  

Definitions of ‘point’ and ‘line’ are not actually needed in order to prove theorems in plane 

geometry; all that we require is the most basic properties of points and lines, and these are listed 

in the axioms.  And if we keep an open mind as to what the terms ‘point’ and ‘line’ might refer to 

(provided that they satisfy the axioms), then any theorems we prove will be portable, readily 

applicable in a wide variety of alternative settings, whether foreseen or not.  Here is an example: 

when writing down the axioms for a real vector space, the terms ‘vector’ is undefined; we allow 

any set of vectors having well-defined vector addition and scalar multiplication that satisfies 

certain axioms.  And so the theory applies to the set of all functions 𝑦 = 𝑓(𝑥) satisfying the 

differential equation 
𝑑2𝑦

𝑑𝑥2
= −𝑦.  Here we may say that the solution set is a 2-dimensional vector 

space with basis {sin 𝑥, cos 𝑥}, an application that would not be available to anyone for whom 

‘vectors’ are strictly geometric arrows. 

 

Statements are logical assertions.  Every statement is true or false; ambiguous ‘statements’ are not 

permitted.  An example of a statement in plane geometry is: ‘The points P, Q and R are collinear.’  

This statement may be true or false, depending on the context.  Some statements are quantified; 

for example the statement ‘For every line ` there exists a point not on `’ has two quantifiers: 

universal (‘For all …’) and existential (‘there exists …’).  Some examples of non-statements are 

‘The point P’, ‘Every point is round’, ‘Is the point P on the line `?’, and ‘This statement is false’. 

 

A theorem is a statement for which a proof is known.  A proof of a given statement is a finite list 

of statements, ending with the given statement, in which every step follows either from an axiom, 

or a definition, or a stated hypothesis of the theorem, or a previously proved theorem, or a previous 

step in the proof.  To decide whether a given statement does in fact follow from previous 

statements, one uses accepted rules of inference.  An example of a rule of inference is ‘modus 

ponens’, which allows us to infer a statement 𝐵 from the statements 𝐴 and 𝐴 → 𝐵.  Thus for 

example, if we know that ‘Alice is a teacher’ and ‘Teachers are smart’, then we may infer that 

‘Alice is smart’. 

 

A model is an example of something that satisfies the given axioms.  A given axiomatic system 

may allow 
 

a) many different models; or 

b) no models (in which case we say the axiomatic system is unsatisfiable or inconsistent); or 

c) a unique model, up to isomorphism (in which case we say that the axiomatic system is 

categorical). 
 

An example of (a) is the axioms of field theory, which allows for many different models (including 

the field ℝ of real numbers, the field ℚ of rational numbers, the field ℂ of complex numbers, etc.).  

If we take the axioms of field theory and add an additional axiom stating that ‘1 = 2’, then we 

obtain an unsatisfiable list of axioms, with no model.  In plane geometry, there are sets of axioms 

that allow for more than one model; but it is possible to choose axioms in such a way that there is 

(up to isomorphism) exactly one model, the Euclidean plane. 

 



A proper axiomatic treatment of Euclidean plane geometry is notoriously difficult and subtle.  

Euclid’s original treatment (in The Elements, c. 300 BC) stood for centuries as the best attempt 

available; but for several reasons, it did not strictly fill the bill.  In particular many of his statements 

were not that precise.  In the early 20th century, several mathematicians, including Bertrand 

Russell, began an ambitious program to reformulate the foundations of modern mathematics in 

order to clarify the undefined and defined notions, the axioms, etc.  David Hilbert and others were 

able to clean up Euclid’s axioms considerably, while remaining faithful to the spirit of Euclid’s 

work; and so we now have available a complete list of axioms for the Euclidean plane.  However, 

the axiomatic description of the Euclidean plane is quite formidable, as it relies upon many 

undefined notions, including ‘point’, ‘line’, ‘distance’, ‘angle’, ‘right angle’, ‘between’, etc.  

Depending on which of the many versions of the list of axioms one refers to, this list may include 

such statements as 
 

 If P, Q and R are distinct points on a line `, then one (and only one) of these three points is 

between the other two. 

 If P and Q are two distinct points on a line `, then there is a unique point M on ` having 

the same distance from both P and Q. 
 

For a first experience with geometric proofs, it is advisable that one considers an axiomatic system 

much simpler than that required by Euclidean geometry.  As an example, let us present the theory 

of affine planes. 

 

Affine Plane Geometry 
 

Here we take just three undefined notions: ‘point’, ‘line’, and ‘incidence’.  By ‘incidence’, we 

mean the relation between points and lines which, given a point P and a line `, allows us to say 

whether or not P is on ` (or synonymously, whether or not the line ` passes through the point P); 

we understand that these are all just slightly different ways of saying that P is incident with ̀ .  Note 

that there is no notion of distance, or of angle, or of order of points on a line, etc.  In terms of these 

undefined notions, we may define the notion of collinearity: we say that three points P, Q and R 

are collinear if there exists a line passing through all three points P, Q and R.  We take three 

axioms, as follows: 
 

A1. Given any two distinct points P and Q, there is a unique line passing through both 

P and Q. 
 

A2. Given any line ` and any point P not on `, there exists exactly one line through P 

 not meeting `. 
 

A3. There exist four points of which no three are collinear. 
 

An affine plane is any structure of points and lines with incidence satisfying these axioms.  The 

Euclidean plane satisfies these axioms, i.e. it is a model; but there are many other models as well, 

the smallest of which is the affine plane of order 4 which includes just four points and six lines: 
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Don’t take this picture too seriously; it is merely a pictorial way of saying that there are just four 

points 𝑃, 𝑄, 𝑅, 𝑆 and six lines 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓; and that incidence is given by: 𝑃 lies on 𝑎, 𝑏 and 𝑐 

only; 𝑄 lies on 𝑎, 𝑑 and 𝑒 only; etc.  There is no point of intersection of lines 𝑏 and 𝑑; this picture 

may be somewhat misleading.  This example is known as an affine plane of order 2 or a 

quadrangle; later we will define the order of an affine plane.  An easy application of the axioms 

shows that every affine plane contains such a quadrangle (i.e. affine subplane of order 2). 

 

Before proving theorems about affine planes, let’s make a useful definition: Two lines are said to 

be parallel if either they do not meet (i.e. they have no points in common), or they are the same 

line.  We write ℓ‖𝑚 if the lines ℓ and 𝑚 are parallel. 

 

Another useful definition: given distinct points 𝑃 and 𝑄, denote by 𝑃𝑄 the unique line through 𝑃 

and 𝑄 (see A1).  If ℓ and 𝑚 are non-parallel lines, then we denote by ℓ ∩ 𝑚 the unique point on 

both ℓ and 𝑚 (such a point exists since ℓ and 𝑚 are not parallel; and it is unique by A1). 

 

Theorem 1.  In any affine plane, given lines 𝑟, 𝑠 and 𝑡 with 𝑟‖𝑠 and 𝑠‖𝑡, then 𝑟‖𝑡.  Thus 

parallelism is an equivalence relation on the set of lines. 

 

Proof.  We may assume that the lines 𝑟, 𝑠 and 𝑡 satisfy 𝑟‖𝑠 and 𝑠‖𝑡.  Without loss of generality, 

we may suppose that 𝑟 and 𝑡 are not parallel, in which case there exists a point 𝑃 on both 𝑟 and 𝑡.  

But then the uniqueness of the line through 𝑃 parallel to 𝑠 (see axiom A2) forces 𝑟 = 𝑡, so that the 

desired conclusion 𝑟‖𝑡 follows.  To see that this means that parallelism of lines is an equivalence 

relation, recall that by definition, every line is parallel to itself by definition; also if ℓ‖ℓ′ then  ℓ′‖ℓ. 

□                                                                                                                                                               

 

Theorem 2.  In any affine plane, every line has at least two points; and any two lines have the 

same number of points. 

 

(We mean that if one line has n points, then every line has n points; if one line has infinitely many 

points, then every line has infinitely many points.  More precisely, given any two lines ℓ and 𝑚, 

the points on ℓ correspond bijectively with the points on 𝑚.) 

 

Proof.  Let ℓ be any line in a given affine plane.  By the observation above 

(the existence of an affine subplane of order 2), there exists a point 𝑃 not on 

ℓ, and at least three lines (call them 𝑎, 𝑏, 𝑐 as in the picture) through P.  By A2, 

at most one of the lines 𝑎, 𝑏, 𝑐 is parallel to ℓ, so we may say 𝑎 and 𝑏 are not 

parallel to ℓ.  Now 𝐴 ≔ 𝑎 ∩ ℓ and 𝐵 ≔ 𝑏 ∩ ℓ are two points of ℓ.  Moreover 

𝐴 ≠ 𝐵 since 𝑃𝐴 = 𝑎 ≠ 𝑏 = 𝑃𝐵.  This proves the first assertion. 
 
Let ℓ and 𝑚 be distinct lines.  By the first assertion, there exists a point 

𝑃 on ℓ but not on 𝑚; and a point 𝑄 on 𝑚 but not on ℓ.  Let 𝑟 = 𝑃𝑄.  For 

every point 𝐴 on ℓ, there is a unique line through 𝐴 parallel to 𝑟, and this 

line meets 𝑚 in a unique point 𝐴’.  We have a bijective correspondence 

𝐴 ↔ 𝐴′ between the points of ℓ and the points of 𝑚.  (It is irrelevant 

whether or not ℓ is parallel to 𝑚; the same correspondence works in either 

case.)                                                                                                                        □ 
 



The number of points on any line of an affine plane (which, by Theorem 2, is a constant) is called 

the order of the plane.  We have seen an affine plane of order 2; and below we show an affine 

plane of order 3.  It has 9 points and 12 lines, with 3 points on each line and 4 lines through each 

point. 

 
We have seen the cases 𝑛 = 2,3 as special cases of the following result. 

 

Theorem 3.  In any affine plane of order 𝑛, there are 𝑛2 points and 𝑛(𝑛 + 1) lines.  Every line has 

𝑛 points and every point is on 𝑛 lines.  Every parallel class consists of 𝑛 lines. 

 

Proof.  Consider an affine plane of order 𝑛, so that 

every line has exactly 𝑛 points, as we have seen.  Let 𝑃 

be any point, and let ℓ be any line not through 𝑃.  (Such 

a line ℓ certainly exists; for example every quadrangle 

contains such a line.)  There is exactly one line through 

𝑃 parallel to ℓ; and each of the remaining lines through 

𝑃 meets ℓ in a unique point.  So the number of lines 

through 𝑃 must be 𝑛 + 1, one more than the number of points on ℓ. 

 Now choose two intersecting lines 𝑎 and 𝑏.  (Two 

intersecting lines can, for example, be chosen from a given 

quadrangle.)  There is a bijective correspondence between points 

𝑃 in the plane and pairs of lines (ℓ, 𝑚) where ℓ‖𝑎 and 𝑚‖𝑏, given 

by 𝑃 = ℓ ∩ 𝑚.  Since there are 𝑛 choices of ℓ (one through each 

point 𝐴 of 𝑎) and 𝑛 choices of 𝑚 (one through each point 𝐵 of 𝑏), 



this makes 𝑛2 choices of point 𝑃 in the plane.  (Note that we allow 𝐴, or 𝐵, or both, to coincide 

with the point ℓ ∩ 𝑚.) 
 

Since each parallel class of lines partitions all the 𝑛2 points of the plane into lines each of 

size 𝑛, there must be exactly 𝑛 lines in each parallel class. 
 

 Next we count, in two different ways, the number of incident point-line pairs (𝑃, ℓ).  Since 

there are 𝑛2 choices of point 𝑃 and 𝑛 + 1 lines through each, there must be exactly 𝑛2(𝑛 + 1) such 

pairs (𝑃, ℓ).  On the other hand, if ℒ is the set of lines then there are |ℒ| choices of ℓ, and 𝑛 points 

on each line, so altogether 𝑛|ℒ| pairs (𝑃, ℓ).  Solving 𝑛|ℒ| = 𝑛2(𝑛 + 1) yields |ℒ| = 𝑛(𝑛 + 1) for 

the number of lines.                                                                                                                           □ 

 

The Classical Affine Planes 
 

The most obvious affine planes which we call the classical affine planes) are those coordinatized 

by fields.  A field is a number system 𝐹 having addition, subtraction, multiplication, and division 

satisfying all the usual properties of commutativity, associativity and distributivity.  For example, 

we have the field ℝ of real numbers; the field ℚ of rational numbers; the field ℂ of complex 

numbers; and for each prime 𝑝, we have the field 𝔽𝑝 = {0,1,2, … , 𝑝 − 1} of integers mod 𝑝.  If 𝐹 

is any field (such as ℝ, ℚ, ℂ, or 𝔽𝑝) then we construct the affine plane 𝐴𝐺2(𝐹) over 𝐹 (‘affine 

geometry of dimension 2 over 𝐹’) as follows: 
 

 Points are ordered pairs (𝑥, 𝑦) ∈ 𝐹2. 

 Lines are defined as follows: 

o ‘Non-vertical’ lines, which have the form {(𝑥, 𝑦) ∶  𝑦 = 𝑚𝑥 + 𝑏} where 𝑚, 𝑏 ∈ 𝐹. 

o ‘Vertical’ lines, which have the form {(𝑎, 𝑦) ∶  𝑦 ∈ 𝐹} where 𝑎 ∈ 𝐹. 

 Incidence is the usual set membership. 
 

The real affine plane 𝐴𝐺2(ℝ)  is the usual Euclidean plane.  This coordinate construction does a 

very good job of describing what one needs to know about the Euclidean plane; and it answers a 

wide range of the questions we might ask about plane geometry.  However, we want to understand 

the Euclidean plane not just algebraically and analytically, but in many other ways—synthetic, 

axiomatic, etc. 

 

In the finite case, namely given a field 𝐹 = 𝔽𝑞 with 𝑞 elements (here 𝑞 = 𝑝𝑟 where 𝑝 is prime and 

𝑟 is a positive integer), the affine plane 𝐴𝐺2(𝔽𝑞)  has 𝑞2 points (𝑥, 𝑦) (there are 𝑞 choices for 𝑥, 

and 𝑞 choices for 𝑦); similarly, there are 𝑞(𝑞 + 1) lines (𝑞 vertical lines and 𝑞 non-vertical lines; 

𝑞 points on each line; etc.  Note that the order of the plane 𝐴𝐺2(𝔽𝑞) is 𝑞, the same as the order 

|𝔽𝑞| = 𝑞 of the field coordinatizing it. 

 

There are many affine planes other than the classical ones. For example, there are seven affine 

planes of order 9, up to isomorphism, including the classical one coordinatized by the field 𝔽9 of 

order 9. 


