
Putting Together all the Fields Qv:
The Adèles, the Mellin Transform and the Riemann Zeta Function

Recall that the Riemann zeta function is the meromorphic function defined in the

right half-plane <(s) > 1 by the series

ζ(s) =
∞∑
n=1

n−s = 1 +
1

2s
+

1

3s
+

1

4s
+ · · ·

The function ζ(s) has a simple pole at s = 1 and elsewhere it is complex analytic. Although

the series above converges only for <(s) > 1, there is a unique function ζ(s) satisfying the

properties above, by general results on analytic continuation. The standard approach to

proving this is to first analytically continue ζ(s) to the half-plane <(s) > 0, and then to

extend to the rest of the plane using the functional identity

ζ(1− s) = π
1−2s

2
Γ
(
s
2

)
Γ
(
1−s
2

)ζ(s).

Although we have simply pulled up this identity as a rabbit out of a hat, we will find

a perfectly logical explanation for the mysterious factor above. This revelation depends

on an understanding of Q via its embedding in all its completions Qv simultaneously (for

v ∈ {∞, 2, 3, 5, 7, 11, . . .}), thus granting to all the p-adic fields Qp the same status as the

Archimedean field Q∞=R. Given

the importance of the Riemann

zeta function, as is clear from its

role in the foremost open prob-

lem in mathematics (the Riemann

Hypothesis), we regard this as a

compelling reason for studying the

p-adic fields Qp alongside R.

One should also keep in mind

that the field Q may be replaced

by an arbitrary number field K

throughout (meaning that K ⊇ Q is a finite extension field), while replacing ζ(s) by the

corresponding Dedekind zeta function ζK(s); then v ranges over all valuations of K, i.e.

the finitely many Archimedean as well as the infinitely many non-Archimedian ‘places’
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of K). Even more generally, all of this generalizes to Dirichlet L-functions, of which zeta

functions are but a special case.

This document is not intended to fully justify the functional equation and other prop-

erties of zeta functions, but rather to show enough of the key ideas in its derivation to reveal

the parallel roles played by R and the p-adic fields Qp which, when fully implemented, do

yield the functional equation of ζ(s) and much more. For complete explanations, see the

famous 1950 thesis of John Tate, which is available as the last chapter in Algebraic Num-

ber Theory , ed. Cassels and Fröhlich, 1967. Another more recent treatment is Deitmar’s

Automorphic Forms, 2013.

I express my gratitude to Joseph Repka, my official graduate advisor. The main ideas

presented in this summary are extracted from notes I took as a graduate student in his

course during October, 1984.

Euler Factorization

Euler observed the factorization

ζ(s) =
∏
p

1

1− p−s

valid for <(s) > 1, where p ranges over all rational primes. This factorization follows eas-

ily from (and is essentially a reformulation of) the Fundamental Theorem of Arithmetic:

the fact that every positive integer has a unique factorization as a product of primes. The

factor (1− p−s)−1 is called the Euler

factor for ζ(s) at the prime p. A sim-

ilar factorization holds for zeta func-

tions, and even for L-functions, de-

fined over general number fields; and

once again the factorization is a con-

sequence of unique factorization—not

of individual elements, but of ideals in

Dedekind domains.

We obtain a first glimpse of the

functional equation of ζ(s) by recog-

nizing that in addition to Euler fac-

tors for each of the finite primes p, one should also include Euler factors for each of the
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infinite primes v. In the case of Q, the missing Euler factor at v =∞ is

π−s/2Γ
(
s
2

)
which, when included, yields the complete zeta function†. Note that the equation ξ(1−s) =

ξ(s) expresses the symmetry of ξ(s) about Riemann’s critical line <(s) = 1
2 .

Haar Measure

Let G be an abelian topological group with binary operation ‘∗’. Thus x ∗ y = y ∗ x
for all x, y ∈ G; the map G ×G → G, (x, y) 7→ x ∗ y is continuous; and the map G → G,

x 7→ x−1 is continuous (where x−1 denotes the inverse of x with respect to ∗).
Let µ be a measure on G. We say that µ is translation-invariant if µ(g ∗X) = µ(X)

for every measurable subset X ⊆ G and every g ∈ G. Here we denote a typical translate

of X by g ∗ X = {g ∗ x : x ∈ X}; and note in particular that translates of measurable

subsets are also measurable.

Under certain technical (but very reasonable) assumptions∗, Haar’s theorem guaran-

tees the existence and essential uniqueness (i.e. up to nonzero scalar multiple) of such a

translation-invariant measure on G. Such a measure on G is called Haar measure.

Example 1. If G is a finite group, with the discrete topology, then Haar measure is simply

counting measure. We usually normalize µ so that µ(X) = |X|
|G| for all X ⊆ G.

Example 2. Let G be the additive group of R. Then Haar measure λ+ is simply Borel

measure, which assigns to each interval [a, b] its length λ+([a, b]) = b− a. For measurable

subsets E ⊂ R we have λ+(E) =
∫
E
dx.

Example 3. Consider the multiplicative group (0,∞) of positive real numbers. Recall that

this is isomorphic to the additive reals of Example 2 via the isomorphism ln : (0,∞)→ R.

† Some authors have included the additional factor s(s−1)/2. The symmetry ξ(1−s) = ξ(s) holds with or
without this additional factor; but s(s−1)/2 is not part of any of the Euler factors. The only purpose of this
additional factor is to force the function ξ(s) to be entire; and the practice of including it has been decried
by several experts.

∗ We assume that G is locally compact and Hausdorff; and µ is defined on the Borel subsets of G, i.e.
members of the σ-algebra generated by the open subsets of G. We further assume that µ is nontrivial; i.e. it
is not identically zero, yet every compact subset of G has finite measure.) Haar’s Theorem states that there
is a nontrivial countably additive measure µ defined on the Borel subsets of G; and that such a measure µ
is unique up to positive scalar multiple. If G were non-abelian, we would instead have to consider measures
invariant under left-translation and right-translation, leading to left and right Haar measures on G; and
these in general do not coincide.
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Haar measure λ× on (0,∞) is found by pulling back λ+ to (0,∞): for measurable subsets

E ⊂ (0,∞),

λ×(E) = λ+(lnE) =

∫
lnE

dx =

∫
E

dx

x

where lnE := {lnx : x ∈ E}. The translation invariance of λ× is expressed by d(ax)
ax = dx

x .

Example 4. The full multiplicative group of nonzero reals R× = {±∞}×(0,∞) has Haar

measure found by slightly extending the measure of Example 3: for measurable E ⊂ R×,

λ×(E) =

∫
E

dx

|x|
.

Example 5. Consider the additive group Qp, which is locally compact Hausdorff. The

Borel subset Zp = {x ∈ Qp : ||x||p 6 1} has a partition

Zp = A0 tA1 t · · · tAp−1

where Aj = j+pZp =
{
j+pa1+p2a2+p3a3+· · · : ai ∈ {0, 1, 2, . . . , p−1}

}
. The translation

invariance of Haar measure λ+ on Qp means that

λ+(A0) = λ+(A1) = · · · = λ+(Ap−1).

After normalizing so that λ+(Zp) = 1, we have

λ+(Aj) = λ+(pZp) = 1
p .

More generally, λ+(aE) = ||a||pλ+(E) for any a ∈ Qp and measurable E ⊂ Qp. In

fact by local compactness, every measurable E ⊂ Qp has a partition of the form E =⊔
α(jα + pkαZp) for which

λ+(E) =

∫
E

dx =
∑
α

p−kα .

Example 6. Consider the multiplicative group of nonzero p-adic numbers Q×p . Every

a ∈ Q×p factors uniquely as a = pku where k ∈ Z and u = ak + pak+1 + p2ak+2 + · · · ∈ Z×p ;

here each ai ∈ {0, 1, 2, . . . , p−1} and ak 6= 0. This gives Q×p = 〈p〉 × Z×p where 〈p〉 =

{. . . , p−2, p−1, 1, p, p2, . . .} is infinite cyclic (isomorphic to the additive group Z). Note the

similarity to Example 4. We want to normalize the Haar measure so that λ×(Z×p ) = 1.

Using the partition

Z×p = (1 + pZp) t (2 + pZp) t · · · t (p−1 + pZp)
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together with the fact that

λ×(j + pZp) = λ×
(
j(1 + pZp)

)
= λ×(1 + pZp)

for each j ∈ {1, 2, . . . , p−1} ⊂ Z×p , we see that

λ×(j + pZp) = 1
p−1

for each j ∈ {1, 2, . . . , p−1}. Similarly, for each k > 1 and j ∈ {1, 2, . . . , p−1} we have

λ×(j + pkZp) = p1−k

p−1 .

More generally, each measurable set E ⊂ Q×p has a partition E =
⊔
α(jα + pkαZp) where

jα ∈ {1, 2, . . . , p−1} and λ×(jα + pkαZp) = 1
p−1 , giving

λ×(E) =
∑
α

p1−k

p− 1
=

p

p− 1

∫
E

dx

||x||p
.

Thus the approriate differential for λ× is p
p−1

dx
||x||p.

Additive and Multiplicative Characters

For each real number a, the map

χ+
a : R→ C×, χ+

a (x) = e2πiax

is an additive character : it is a continuous map satisfying χ+
a (x+ x′) = χ+

a (x)χ+
a (x′) and

|χ+
a (x)| = 1 for all x. If we drop the ‘unitary’ requirement |χ+

a (x)| = 1, then we have also

quasicharacters of the form x 7→ esx for arbitrary s ∈ C. While the term ‘character’ is

understood more broadly in representation theory, in this context we are considering just

linear characters (i.e. characters of degree 1) defined on the additive group of R.

The corresponding notion of character on the multiplicative group R× would be a

continuous map χ× : R× → C× satisfying χ×(xx′) = χ×(x)χ×(x′) and the unitary re-

quirement |χ×(x)| = 1. Although there are no nontrivial examples of such characters

satisfying the unitary condition, we do have nontrivial quasicharacters: for each a ∈ C we

have χ×a (x) = |x|a = ea ln |x|. Moreover, considering that R× ∼= {±1} × (0,∞), we can

multiply χ×a by a character of {±1} to get more quasicharacters of R× having the form

x 7→
{
|x|a = ea ln |x| if x > 0;

−|x|a = −ea ln |x| if x < 0
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but these quasicharacters we shall not require here; in fact we shall only use χ×a for a ∈ R.

Let us now consider characters on p-adic fields. Every x ∈ Qp has a p-adic expansion

x = a−kp
−k + · · ·+ a−1p

−1︸ ︷︷ ︸
principal part of x

+a0 + a1p+ a2p
2 + a3p

3 + · · · , ai ∈ {0, 1, 2, . . . , p−1}

in which the leading terms form the principal part of x. Note that the principal part of

x is a rational number in the interval [0, 1); and it is a distinguished representative of the

additive coset x + Zp ∈ Qp/Zp. Moreover, mapping each x ∈ Qp to its principal part is

continuous. (This map is in fact locally constant.) When we add two p-adic numbers, we

add their principal parts; so it follows that every a ∈ Qp gives an additive character

χ+
a : Qp → C×, χ+

a (x) = e2πi(principal part of ax).

We also have multiplicative quasicharacters of the p-adics: for each s ∈ C, define

χ×s : Q×p → C×, χ×s (t) = ||t||sp = es ln ||t||p .

These maps are continuous but not unitary for s 6= 0. Once again, there are more general

quasicharacters of Q×p ∼= 〈p〉×Z×p obtained by multiplying χ×s by an arbitrary multiplicative

character ψ : Z×p → C× to obtain quasicharacters of the form

Q×p → C×, pkt 7→ ||pkt||spψ(t) = p−ksψ(t)

for t ∈ Z×p ; but we will not need these here. (Such quasicharacters would however be used

if our goal was to construct Dirichlet L-functions rather than just zeta functions.)

The Fourier Transform

The Fourier transform of a function f : R→ C is the function f̂ : R→ C defined by

f̂(y) =

∫
R
e2πixyf(x) dx.

(We assume that the integral converges; this will be the case if f is a Schwartz function

satisfying xkf (`)(x)→ 0 as x→ ±∞, for all k, `.) The factor χ+
y (x) = e2πixy here serves as

an additive character of R. This transform enjoys several important properties, including

Theorem (Poisson Summation Formula). If f ∈ C∞(R) is a Schwartz function,

then ∑
n∈Z

f̂(n) =
∑
n∈Z

f(n).
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This formula in fact gives rise to the functional identity of ζ(s). We should regard the

functional equation for ζ(s) as arising from an algeraic duality, since this is the source

of the Poisson summation formula. A standard example of a smooth Schwartz function

is f(x) = e−πx
2

; and it is a standard exercise to check that this function has Fourier

transform f̂ = f , a fact that we will invoke later. (To be honest, this is not the only

function equal to its own Fourier transform; nevertheless it is about the simplest example

and so we might regard it as still rather special.)

Next we proceed by analogy to define the Fourier transform of a function f : Qp → C.

We replace the additive character x 7→ e2πixy by the additive character

χ+
y : Qp → C×, χ+

y (x) = e2πi(principal part of xy)

introduced in the previous section. Integration is with respect to Haar measure on Qp, and

the differential is written as dx just as in the real case. Thus given an integrable function

f : Qp → C we define the Fourier transform f̂ : Qp → C by

f̂(y) =

∫
Qp
χ+
y (x)f(x) dx =

∫
Qp
e2πi(principal part of xy)f(x) dx.

As an example, consider the characteristic function of Zp given by

f : Qp → {0, 1}, f(x) =

{
1, if x ∈ Zp, i.e. ||x||p 6 1;

0, otherwise.

We compute its Fourier transform

f̂(y) =

∫
Zp
e2πi(principal part of xy)dx.

If y ∈ Zp then xy ∈ Zp has principal part 0 so

f̂(y) =

∫
Zp
dx = λ+(Zp) = 1.

On the other hand, if ||y||p = pk > 1 then the principal part of y is a rational number of

the form a
pk

where gcd(a, p) = 1. We partition Zp =
⊔ pk−1
b=0 (b + pkZp) where each of the

parts has size λ+(b + pkZp) = 1
pk

; also the integrand has constant value ζb on b + pkZp
where ζ = e2πia/p

k

is a complex primitive pk-th root of unity. This gives

f̂(y) =

∫
Zp
e2πi(principal part of xy)dx =

1

pk

pk−1∑
b=0

ζb =
1

pk
ζp
k − 1

ζ − 1
= 0.

Thus f̂ = f and we may regard f , the characteristic function of Zp, as a kind of p-adic

analogue of the function x 7→ e−πx
2

on the reals.
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The Mellin Transform over the Reals and the p-Adics

The Mellin transform is designed for functions defined on the multiplicative groups of

the reals or p-adics, analogous to the Fourier transform of functions on the corresponding

additive groups. From the definition of the Fourier transform over R, we first replace the

additive character χ+
y (x) = e2πixy by the multiplicative quasicharacter

χ×s : (0,∞)→ C, χs(t) = ts = es ln t

for s ∈ C. Secondly, we need to replace the differential dx by dx
x in order that we integrate

with respect to Haar measure on (0,∞). With these two changes, we obtain the Mellin

transform Mf of a function f : (0,∞)→ C:

(Mf)(s) =

∫
(0,∞)

χ×s (t)f(t)
dt

t
=

∫ ∞
0

ts−1f(t) dt.

For example, the Mellin transform of f(t) = e−t on (0,∞) is the Gamma function:

(Mf)(s) =

∫ ∞
0

ts−1e−t dt = Γ(s).

For functions f : R× → C, one may instead take

(Mf)(s) =

∫
R×
χ×s (t)f(t)

dt

|t|
=

∫
R×
|t|s−1f(t) dt.

Next we look for the appropriate transform for functions Q×p → C. Proceeding as

before, we first replace the quasicharacter by χs(t) = ||t||sp. Secondly, we replace the

differential dx by Haar measure p
p−1

dt
||t||p on Q×p . Thus we arrive at the appropriate Mellin

transform on Q×p :

(Mf)(s) =
p

p− 1

∫
Q×p
||t||spf(t)

dt

||t||p
=

p

p− 1

∫
Q×p
||t||s−1p f(t) dt.

The Euler Factors

We obtain the Euler factors of ζ(s) by taking the corresponding Mellin transforms

of the functions x 7→ e−πx
2

(on the reals) and the characteristic function of Zp (on the

p-adics). We do not justify why this is the ‘right’ thing to do (for that, see the references

we have cited); we simply point out that these two functions play analogous roles in that

each is its own Fourier transform for functions on the corresponding domain.
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For each prime p, take f : Qp → {0, 1} to be the characteristic function of Zp. The

Mellin transform of f is

(Mf)(s) =
p

p− 1

∫
Q×p
||t||s−1p f(t) dt =

p

p− 1

∫
Q×p ∩Zp

||t||s−1p dt.

Now partition Q×p ∩Zp =
⊔∞
k=0 p

kZ×p . The integrand has constant value ||t||s−1p = p−(s−1)k

on pkZp; and this part of the domain has size λ+(pkZ×p ) = p−kλ+(Z×p ) = p−1
pk+1 so

(Mf)(s) =
p

p− 1

∞∑
k=0

∫
pkZ×p
||t||s−1p dt =

p

p− 1

∞∑
k=0

p−(s−1)k
p− 1

pk+1

=
∞∑
k=0

p−sk =
1

1− p−s

which is exactly the desired Euler factor for the prime p.

By analogy, we compute the Mellin transform of the function f(x) = e−πx
2

on R×:

(Mf)(s) =

∫
R×
|t|s−1e−πt

2

dt = 2

∫ ∞
0

ts−1e−πt
2

dt.

Substituting u = πt2,

(Mf)(s) = π−s/2
∫ ∞
0

u
s
2−1e−u du = π−s/2Γ

(
s
2

)
which is also the desired Euler factor at v =∞.

The Functional Equation

Having thus arrived at ξ(s) = π−s/2Γ
(
s
2

)
ζ(s), let us verify the functional equation

ξ(1− s) = ξ(s). As usual, we will leave it to the reader to check the details of convergence

at each step. For <(s) > 1,

ξ(s) = π−s/2Γ
(
s
2

)
ζ(s)

=
∞∑
n=1

π−s/2

ns

∫ ∞
0

ts/2e−t
dt

t

=
∞∑
n=1

∫ ∞
0

e−t
( t

πn2

) s
2 dt

t

=
∞∑
n=1

ts/2
∫ ∞
0

e−πn
2t dt

t

=

∫ ∞
0

ts/2ω(t)
dt

t
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where ω(t) =
∑∞
n=1 e

−nπ2t. This says that ξ(−2s) is the Mellin transform of ω(t). The

identity in fact holds whenever <(s) > 0 since both sides are analytic due to the rapid

decay of ω(t) as t→∞. It is easy to check that the Fourier transform of f(x) = e−πtx
2

is

f̂(s) = 1√
t
e−πs

2/t so the Poisson summation formula gives

1 + 2ω(t) = 1 + 2
∞∑
n=1

e−πn
2t =

1√
t

(
1 + 2

∞∑
n=1

e−πn
2/t
)

=
1 + 2ω(1/t)√

t
.

Now in the vertical strip 0 < <(s) < 1,

1

s
+

∫ 1

0

us/2ω(u)
du

u
=

1

2

∫ 1

0

us/2
(
1 + 2ω(u)

) du
u

=
1

2

∫ ∞
1

t−s/2
(
1 + 2ω

(
1
t

)) dt
t

=
1

2

∫ ∞
1

t
1−s
2

(
1 + 2ω(t)

) dt
t

=
1

s− 1
+

∫ ∞
1

t
1−s
2 ω(t)

dt

t

using the substitution u = t−1, du
u = −dtt ; also using the identity obtained above from

Poisson’s formula. So again for 0 < <(s) < 1,

ξ(s) +
1

s
+

1

1− s
=

1

s
+

1

1− s
+

∫ ∞
0

us/2ω(u)
du

u

=
1

s
+

1

1− s
+

∫ 1

0

us/2ω(u)
du

u
+

∫ ∞
1

ts/2ω(t)
dt

t

=

∫ ∞
1

t
1−s
2 ω(t)

dt

t
+

∫ ∞
1

t
s
2ω(t)

dt

t

=

∫ ∞
1

(
t
1−s
2 + t

s
2

)
ω(t)

dt

t

which is entire due to the rapid decay ω(t) → 0 as t → ∞. Analytic continuation to the

remaining s-values gives the functional equation ξ(1 − s) = ξ(s), while also showing that

ξ(s) is analytic outside the simple poles at 0, 1.

The Adèles

The ring of adèles is the set A consisting of all sequences

a = (a∞, a2, a3, a5, a7, a11, . . .) ∈
∏
v

Qv
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such that ||av||v 6 1 for almost all v, i.e. ap ∈ Zp for all but finitely many primes p.

(Convention: v ranges over {∞}∪{primes} whereas p ranges over {primes}; so ‘for all but

finitely many v’ means the same as ‘for all but finitely many p’.) Note that A is a ring

with componentwise addition and multiplication; and Q ⊂ A is realized as a subring via

the diagonal embedding

a 7→ (a, a, a, a, . . .)

since every nonzero a ∈ Q satisfies ||a||p = 1 for almost all p. We take a topology on A
defined by the collection of basic open sets of the form

U = U∞ × U2 × U3 × U5 × U7 × U11 × · · ·

where each Uv ⊆ Qv is open, and Up = Zp for all p sufficiently large. (This is different

from the product topology. The problem is that a product of locally compact spaces is

not locally compact, unless most of the factors are actually compact.) One checks that

A is a locally compact Hausdorff space; thus it has an additive Haar measure λ+. This

measure is normalized so that λ+(Zp) = 1 for every p (here each Zp, and more generally

every Qv, is realized as a subring of A). More generally for finite products E =
∏
v Ev ⊂ A

having measurable factors Ev ⊂ Qv, we have λ+(E) =
∏
v λ

+
v (Ev) where λ+v is additive

Haar measure on Qv.

Exercise. Q ⊂ A is discrete and co-compact. (Co-compact means that the quotient space

A/Q is compact.)

The multiplicative group of units A× is the group of idèles. Thus an idèle is a sequence

of the form a = (a∞, a2, a3, a5, a7, a11, . . .) ∈
∏
v Qv such that av 6= 0 for all v; and

||ap||p = 1 for all p sufficiently large. If we take the subspace topology for A× ⊂ A, then

multiplication is continuous in A×; but the inverse map a 7→ a−1 is not continuous. Instead

we take a refinement of the subspace topology, defined as follows. Basic open sets U ⊆ A×

have the form U =
∏
v Uv where Uv ⊆ Qv is open for every v; and Up = Z×p for all but

finitely many p. The resulting topology on the idèles is the coarsest possible refinement

of the subspace topology for A× ⊂ A, for which A× is a topological group. The absolute

value of an idèle a = (av)v is the product

|a| =
∏
v

||av||v

which is well-defined since almost all factors are 1. This definition extends to a multiplica-

tive function on the adèles by taking |a| = 0 if a ∈ A r A×. Thus |a| =
∏
v ||av||v for all

a ∈ A. The set of idèles a ∈ A× of absolute value 1 is a subgroup containing Q×. The
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idèle group is locally compact Hausdorff; its Haar measure extends the multiplicative Haar

measure on the Qv’s.
In his thesis (and following ideas of his advisor Emil Artin), Tate gave an interpretation

of zeta functions based on the ring of adèles, and on the subring of idèles, which clarified

the role of the functional identity. Given x = (x∞, x2, x3, x5, . . .) ∈ A, define f(x) =

(fv(xv))v ∈ A where f∞(x∞) = e−πx
2
∞ and fp(xp) = 1 or 0 according as xp ∈ Zp or

not. The Mellin transform of f is the product of the Mellin transforms of the individual

coordinates, which therefore yields ξ(s).
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