Math 5605 Algebraic Topology

Book 2

when are two covering maps of X equivalant? Say Y - + > X, Y'-+ > X are covering maps Graph i.e. combinatorial graph with vertices \$1,2,3,43 and edges \$\$1,23, \$1,33, ---, \$3,433. eg. X = X is the geometric realization of this graph braced as disjoint union of copies of [9,1] with endpoints identified as required by the picture. I and I have the same geometric realization although they are defferent graphes. 2 2 - 2 3',3" · 🛏 3 4',4" ---->4

When are two covers of X equivalent (isomorphic, i.e. essentially the same) ? Let $p: X_1 \to X_1$, $p: X_2 \to X$ be covering spaces of X_1 . We say $\theta: X_1 \to X_2$ is an equivalence or isomorphism of the two covers if θ is a homeomorphism and $p_2 \cdot \theta = p_1$, i.e. $X_1 \to X_2$. Pit KP2 But what about 2' 3' 4' W= 3' 4' valant to 4" 2" Wey X not equivalent Is this equivalent to 2→ X? No... 3',3" → 3 Another picture of these coreas 4' 4' F 7 4

To construct an refold cover of X, created one copy of [r] = {1,2,...,r} for each vertex of X. Then for each edge of X, match up the corresponding fibres in the cover using a chosen permitation. A triple cover Y->X is constructed as \sum Why is 2 more special than other positive integers (the addest prime of ell)? Consider X = 000 has many tiple covers including Y1 = 000 a The covering maps Y->X and Y2->X are not equivalent. Y2= 12 An equivalence between Y->X and itself (antomorphism of the cover) 16 is a deck transformation. This is the same as a homeomorphism Y->Y which preserves fibes. In the example above Y-> X has 3 actomorphisms (deck transformations) But Y, -> X has only one "Utrivial) deck transformation In a conveited roll cover, there are at most r deck transformations. If equality holds, the covering space is normal or Galois. (not the same as normal space in point set topology). Double covers are diverge normal. $V_{3} = Q_{4} O^{4} O^{4} O^{4}$

In group theory, subgroups of index 2 are normal. (separable) 0 P. M. 12 a taxing more all
In the case of lixtensions of Fields, the excension is morning.
For a field extension E2F, the degree of the extension is []
a vector space over F. The number of F-automorphisms of E (i. F: E) E automorphism fixing the fit is a normal or Galors
a vector space over F. We humber of Frantomorphisms is equal, it's a normal or Galors $\sigma(a)=q$ for all $e \in F$) is at most [E:F]. If this number is equal, it's a normal or Galors extension. Extensions of degree 2 (quadratic extensions) are always normal.
2 2 to-1 A dode calcol graph -> Peterson DEAB real proj. plane
Double covers : examples
S' is not a top. group unless ne \$1,33.
$S' = S \ge C : z = 1$
$S = \{z \in H : z = 1\}$ $H = \{a \neq bi \neq cj \neq dk : a, b, c, d \in R\}$ $i^2 = j^2 k^2 = ijk = -1$
\cong SU ₂ (C) = {A=[$\overset{\alpha}{\gamma}$ $\overset{\beta}{\beta}$] : $\alpha_{,\beta}, \gamma_{,} S \in C$, $AA^{*} = A^{*}A = I$, $det A = I$?
$SO(\mathbb{R}) = \{A \in \mathbb{R}^{3\times3} : AA^{T} = A^{T}A = I\}$ but $A = I\}$
CI = 232 AIT IT = 2 I I an atal can product
$Q_3(\mathbb{R}) = A \in \mathbb{R}$: $AA = AA = I$ has two conducted comptoints Fact: $S^3 = SU_2(\mathbb{C}) \longrightarrow SO_3(\mathbb{R})$ is a double cover. $Z(S^3) = 9 \pm 1$ homeomorphis Fact: $S^3 = SU_2(\mathbb{C}) \longrightarrow SO_3(\mathbb{R})$ is a double cover. $PSU_2(\mathbb{C}) = S^3/2(S^3) \cong SO_2(\mathbb{R}) \cong P\mathbb{R}$.
$F_{12}(C) = S_{2}(S) = S_{2}(R) = F_{R}$

In general for 173, T, (SO, (R)) = 2/22 Simply connocted donale cover Spin (R) -> SOn (R) is its universal cover constructed from Clifford Algebras (generalizing H) In any covering space p: Y-> X and given any path f: [0,1] -> X starting at f(0) = x0, the path f can be lifted to Y ie there is a path g: [0,1] -> Y such K: [0,1]-7X $Y = T^{2} \qquad f: [0,1] \rightarrow \chi \qquad is another path in$ $f: [0,1] \rightarrow \chi \qquad for x, to x, for x, to for the integral of the formation of th$ that f= pog ie. [0,1] (0,1] (0,1] (1) Assuming X is path-connected and p: Y -> X is a path-connected covering space, X = Y/~ where two points yo, y, EY satisfy yo~y, iff $p(y_0) = p(y_1)$.

Every path f in X from Xo to X, gives a bijection between fibres $\vec{p}'(x_0) \longrightarrow \vec{p}'(x_1)$. y. y. yz y3 P X In particular if p is k-to-1 at xo i.e. $|\vec{p}'(\pi_0)| = k$ then it is k-to-1 everywhere i.e. $|\vec{p}'(\pi)| = k$ for all $\pi \in X$. p'(x) = { yo, y1, y2, ... } P(x) = { 20 , 21 , 22 , ... } More generally, if f_t is a homotopy in X and we are given to, then every lifting of f_0 to Y extends to a lifting of f_t to Y. \mathbb{R}^2 is the universal cores of T^2 $\mathbb{R}^2 \xrightarrow{\gamma} T^2 = \mathbb{R}^2/\mathbb{Z}^2$ S'XR T²

Let X be a peth-connected space. Then X has a path-Connected and universal cover it X is path-convected bocally path-convected · seni-locally simply connected universal covez: Hawaiian earring CR2 Example of a top. space without a 5'25'25'2... Comptable wedge Sim (CW complex) (not a CW conglex) Universal over of Ky privalent tree (also the universal coros of any privalent connected graph) i.e. regular of degree 2 connected

Universal cover of any connected regular graph of degree 4 is ∞ Cayley goeph of Free [a,b] = G Vertices correspond to elements of G Every vertex we G has edges to wa, wa', wb, wb' a $\tilde{\chi} = \chi/c$ Universal cover of K3,4 Ore 1,1,1,1,1,1,1,1,1 PR has S' as its universal cover $G = \{1, -1\}$ acts on S^2 → PR 1x = x(-1)x = -x (artipode of x) quotient of 5th by the antipodal.

X/~ = partition of X into equivalence classes of the equiv. relation "~"
X/G = partition of X into the orbits of G(x ~ xg or gG1)R Of a G
$(x \sim xg \circ gG)$
for all $g \in G$. $\chi \longrightarrow \chi'_{2}$
\mathbb{P}/\mathcal{A} N Cl
$\mathbb{R}/\mathbb{Z} \stackrel{\sim}{=} S' \qquad $
$\mathbb{R}^2/\mathbb{Z}^2 \stackrel{\simeq}{=} \mathbb{T}^2 = S' \times S'$
A non-discrete action of Z on R eq. (2)={2 ^k : k \in Z}
Gacts descretely on X if for every rex there is a one upld U of r such that
A non-discrete action of Z on R eg. $\{2\} = \{2^k : k \in \mathbb{Z}\} < \mathbb{R}^k = \mathbb{R}^{-\frac{1}{2}} $ G acts descretely on X if for every $x \in X$ there is an open north U of x such that the only $g \in G$ mapping $x \mapsto x^3 \in U$ is $g = 1$.
G= {x +> 2 ^k x+l : k, l \in Z } is non-discrete
If X is "nice" (peth-connected, locally path-connected, SLSC) then X has a simply connected (and path-connected) cover which is a minersal cover. It is unique up to isomorphism of covering spaces.
connected (and path-connected) cover which is a minersal cover. It is unique up to
isomorphism of contring spaces.

x	miversal over	Fix $x \in X$, $\tilde{x} \in \tilde{p}'$ $G \cong \pi_1(X, x_0)$	(_{x₀}) ∈ X̃.	Every o	ther coveric (path-1	g Space commetted)	Y-> X
• • • • • • •	Y	ڪ≅ π , (χ, ∞) .	· · · · · · · · ·	has the	form Y=	х́/н,	4≼€.
× ×	$= \tilde{X}/G$ $\tilde{S}' + H = e^{2\pi i t/k}$ R H = R		$\rightarrow e^{2\pi i t}$ $z \rightarrow z^{k}$	G=ℤ H≤C hu	as the form	H= kZ,	k e Z
· · · · · · · · · · · · · · · · · · ·		riversal corea X-	→ χ ?	x̃ = { pat	hes in X stor	oling at a	the
		5/3		· · · · · · · · · ·	his in X star hoxen loase i.e. pat with pe	point xos	homotopy
· · · · · · · ·					with	fixed starf	ing and ending
			۲۴ ۴۴ (۴)		K (the end		
		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $					
	a de la composición de						

Cohomelogy Consider a sequence of vector spaces over F	given hy
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \partial_{q} \\ \end{array} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{q} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ $	2; d' linear transformations (more generally V;
V'or V: has i just an index for purposes of reference.	V'are modules over
IF diodin = 0 then d is a boundary map and the sequence of Vi's is a <u>complex</u> . (similarly if d ⁱⁿ , d' = 0, d is a colorendary map.)	a ring R and d; d' are R-homomorphisms i.e. $d(av+bw) = adv+bdw$ $q,b \in F$; $v,w \in V$
Notable example : differential forms (smooth) Let X be a real n-manifold. In a nord of each point $x \in X$, bocal coordinates $(x_r,, x_n) = x$.	$x \in \mathcal{U} \subseteq \mathcal{X}$, we have
R= C°(U) = { smooth real valued functions on U}. V=R. d: Y->V = { differential + forms on U} = { f, dx, + fz V' is a vector space over R (∞-dimensional bot n-dimensional as module over R	$dx_2 + f_3 dx_3 + + + f_n dx_n + f_i \in \mathbb{R}^3$
but n-dimensional as module over R	

£g.	$X = \mathbb{R}^2 - \{0,0\}$	$D \xrightarrow{0} V' \xrightarrow{d} V$	$d \rightarrow \gamma^2 \xrightarrow{d} 0$	· · · · · · · · · · · ·
γ° =	3 smooth functions	$X \rightarrow R_3 = R = "o-form$	~S ^{(r}	· · · · · · · · · · · · · · ·
		i.e. smooth differential		is is closed but not exact
	22- forms on X }			
i i γ′i =	f = f dx + g dy = f	ge RZ		
Eg.	$\omega = \frac{\chi dy - y dx}{\chi^2 + y^2} $	(= 4)		
Integr	ate woren the path	YLt) = (cost, sint)	$t \in [0, 2\pi]$	(,0)
Ĵω γ	$\int \frac{x dy - y dx}{x^2 + y^2} =$	$\gamma(t) = (\cos t, \sin t)$ $\int_{0}^{2\pi} \frac{\cos^{2}t}{1} dt + \sin^{2}t} dt = \int_{0}^{2\pi} dt$	$= 2\pi \qquad x = \cos \alpha$ $dx = -s$	t i-t dt
x,q :	global coordinates in		y = >	int cost dt
ηθ÷	local coordinates (m	et global) coordina	$\theta \in R = V^{\circ}$ $dy = 0$ ite functions $X \rightarrow 0$	R
	β = 2 π		or on UC	X x= rcosθ y= rsinθ
Ĩ		dr.=	W= OSD cosD dr=rsinD dD sinDdr+rcosD dD	$\Upsilon(t)$: $r(t) = 1$
		and a second a second a dy se	sinddr + rast do	· · · · · · · · · · · · · · · · · · ·

$\gamma^{o} \xrightarrow{d} \gamma^{\prime} \xrightarrow{d} \gamma^{2}$	If X is an x-manit	old then
$f \longrightarrow df$	V ^k = { k-forms on X } of dimension (^k).	is an R-module
$\begin{array}{cccc} x & \longrightarrow & dx \\ y & \longmapsto & dy \end{array}$	We need X to be price	entable
$r \rightarrow dr$		
d is R-linear but not R-linear	· · · · · · · · · · · · · · · · · · ·	
dlfg) + fdg		
$V^2 = \{ f dx r dy : f \in R \}$		
If X has local coordinates x1,, Xn	then $V' = \{f_i dx_i + \cdots + f_n dx$	w: fier}
$dx_i \wedge dx_i = 0$	then $V' = \{f_i dx_i + \dots + f_n dx_n\}$ $V^2 = \{f_{i2} dx_i \wedge dx_2 + f_{i3} dx_{i3}\}$	Fides + - Fije R3
dr. Adri = - ari A ari		
Wedge products are R-multilinear eg.	\sim	w'n fger ww'n
dx n(dy n dz) = (du n dy) n dz = du n dy)		with forms
= $(-dy \wedge dx) \wedge dz$) = $-dy \wedge (dx)$	$dz) = - dy \wedge (-dz \wedge dx) =$	dy n dz n dx
$dx \wedge (dy \wedge dz) = (dy \wedge dz) \wedge dx$	If wis an i-form and of	is a j-torm then
	$W \wedge \eta = (-1) \eta \wedge W $ is an iff-	lorn, and a second a

Vk is spanned by terms	like $f dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_k}$ $dw = d(f dx_{i_1} \wedge \cdots \wedge dx_{i_k})$	$=: w \in V^{k} \ W L D G_{\leq i} < i_{2} < \cdots < i_{k} \leq n$ $dx_{i_{k}}) = df \Lambda dx_{i_{1}} \Lambda \cdots \Lambda dx_{i_{k}} \in V^{k+1}$
		$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$
In R ³ with (global) coordinates x, y, z	1. yk yber 1
P-VO- 5 smooth -	functions R3 -> R3	d: Vk -> Yber i is R-linear but not R-linear
Pick fe V [°] ie f: 10 dr 1, of 1	$\mathbb{R}^3 \longrightarrow \mathbb{R}$ is a support of for	motion is a very special 1-form se it is exact. (EdV°)
$a_{t} = \frac{1}{2x} a_{t} + \frac{1}{2y} a_{t}$	De ac e v mis becau	se it is exact. $(\in dV^{\circ})$
$d(df) = d(\partial x^{out} + \partial y)$	m + Frat)	
$= d(\widehat{\mathfrak{s}}) \wedge dx + d(-$ = $(\frac{\partial}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial}{\partial f} \frac{\partial f}{\partial f}$	$\frac{\partial f}{\partial y}$) $\wedge dg + d\left(\frac{\partial f}{\partial z}\right) \wedge dz$ $dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial x} dz$) $\wedge dy + \left(\frac{\partial}{\partial z}\right)$	$\frac{\partial f}{\partial y} dx + \frac{\partial}{\partial y} \frac{\partial f}{\partial y} dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial y} dz \right) \wedge dy$
	$\frac{\partial f}{\partial z} dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial z} dz \right) \wedge dz = 0$	$d^{2} = 0 \qquad \text{i.e.} d^{2} \omega = d(dw)$ For all $\omega = 0$
		For all w?

Integine a surface $S \subset \mathbb{R}^3$. We integrate an arbitrary 2-form $w \in V^2$ over SIf $w = f(x,y,z) dx dy + g(x,y,z) dx dz + h(x,y,z) dy dz \in V^2$ then $\int w$ $= \int f(x,y,z) \, dx \wedge dy + \cdots$ $dx = \frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv$ local local u,v $\begin{array}{ll} If & x = x(u, \mathbf{v}) \\ y = y(u, \mathbf{v}) \end{array}$ dy - Dy du + Dy dv then f(x,y) dx Ady $dx A dy = \left(\frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv\right) \Lambda$ = $f(\pi(u,v), y(u,v))\left(\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u}\right)du dv$ $\left|\frac{\partial(x,y)}{\partial(x,y)}\right| = \left|\frac{\partial y}{\partial x}\right| = \left|\frac{\partial y}{\partial y}\right|$ $\left(\frac{\partial y}{\partial u} du + \frac{\partial y}{\partial v} dv\right)$ $= \left(\frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}\right) du \wedge dv$ For a region $X \subset \mathbb{R}^2$, γ path in X from P to Q, $\omega \in V'$, we define the path integral $\int_{\gamma} \omega$ If w= df (an exact 1-form) then $\int_Y w = \int_Y df = f(R) - f(P)$ by the Fundamental Theorem of calculus $\int_Y w = \int_Y df = f(R) - f(P)$ But for But if $Y' \sim Y$ in X then $\int_{Y'} w = \int_{Y'} w = f(0) - f(P)$ whenever w = dF.

Stokes' Theorem (general Fundamental Theorem of Calculus) Let X be an orientable n-manifold with boundary ∂X which is also orientable (n-1)-manifold. Let $\omega \in \Lambda'$, so that $d\omega \in \Lambda'$. Then $\int_{\partial X} \omega = \int_{X} d\omega$ Special case: X = [a,b] = R, $\partial X = \{a, b\}, \quad w = f \in \mathcal{R} \quad (support function X \rightarrow \mathcal{R})$ dw = f(x) dxSF' = Sf(t) dt = f(b) - f(a) $\int \omega - \int \omega = \int \omega = \int d\omega$ If in particular dw = 0 (w a closed + form) then RHS = 0 giving $\int_{Y} w = \int_{Y} w$. Exact forms are automatically closed (if w = df then $dw = d^2f = 0$). Not conversely! nuless X is simply connected.

The gap between Sclosed forms? and Eexact forms? is neasured by colored gy. (n-1) forms not forms (n+1) forms image of d': V" -> V" is B" = { exact n-forms } kernel of d": V->V" is Z"= { closed n-forms } H"= Z"/B" = n" cohonology group (or vector spece over R) dim H" is the number of in-dim't holes" in X. C stands for cochains; I is the coboundary X = R² - 803 punctured plane $C^{k} = \{ diff, k \text{ forms on } X \} = C^{k}(X; \mathbb{R}) = C^{k}(X)$ $C^{0} = \{ \text{ smooth functions } X \rightarrow \mathbb{R} \}$ $0 \xrightarrow{d} C^{\circ} \xrightarrow{d} C' \xrightarrow{d} C^{2} \xrightarrow{d} O$ $w = \frac{x \, dy - y \, dx}{x^2 + y^2} \quad \text{is closed (i.e. } hw=0)$ but w is not exact i.e. $w \neq df$ for any $f \in C^\circ$. $C' = \{f_{ir,y}\}dx + g_{ir,y}dy : f_{ig} \in C^{\circ}\}$ $C = \{h_{ir,y}\}dx \wedge dy : h \in C^{\circ}\}$ H'= {closed 1 forms}/{exact 1-forms} = H'(X; R) (df = $\frac{\partial f}{\partial x} dx + \frac{\partial f}{\partial y} dy$ dive H'= 1. Proof of this follows. (df dx) = df rdx. d(gdy) = dg rdy

Proof that dim H' = 1. Let η be any closed 1-form on X i.e. $\eta \in C'$, $d\eta = 0$.
$ \begin{array}{c} ^{2\pi} \\ ^{0} \\ ^{(1,0)} \end{array} \stackrel{\text{let}}{=} \left\{ \begin{array}{c} = \int \eta \\ s' \end{array} \right\} \stackrel{\text{z}}{=} \left\{ \begin{array}{c} 0 \\ 0 \end{array} \right\} \stackrel{\text{d}}{=} \left\{ \begin{array}{c} 1 \end{array} \right\} \stackrel{\text{d}}{=} \left\{ \begin{array}{c} 1 \\ 0 \end{array} \right\} \stackrel{\text{d}}{=} \left\{ \begin{array}{c} 1 \end{array} \right\} \stackrel{\text{d}$
To show if is exact use: To show if is exact use: the which are homotopic in X (with common
To show η' is exact use: For any two patters γ, τ' in χ which are homotopic in χ , (with common endpoints), $\int \eta = \int_{\gamma} \eta$ $0 = \int d\eta = \int \eta = \int \eta - \int \eta$
$O = \int_{A} a\eta - \int_{\partial A} \eta = \int_{\gamma'} \eta = \int_{\gamma'} \eta = \int_{\gamma'} \eta$
Stokes' Theorem
Here is our candidate $f \in C^{\circ}$ for which $df = \tilde{\eta}$. For each $Q \in X$, define $f(Q) = \int \tilde{\eta} = \int^{x} \tilde{\eta}$ where γ is any path in X from (1,0) top
To see that this f is well defined first fix one path Q . γ from (1,0) to Q . Then any path γ in χ from (1,0) to Q O is homotopic to γ contatends with γ_1^{k} so $\int_{\gamma} \tilde{\eta} = \int_{\gamma} \tilde{\eta} + k \int_{\gamma} \tilde{\eta} = \int_{\gamma} \tilde{\eta} \pm O$ $df = \tilde{\eta}$.

For $X = \mathbb{R}^2 - SO3$, (puncturel plane), $\pi(X) \cong \mathbb{Z}$ since X is is contractible to and dim H(X; IR) = 1. These two facts are related by the theorem of > Hurewicz. R IF we define our cohomology groups in a more mineral way then H'(X) = H'(X; Z) is an additive abelian group i.e. Z-module. $(\cong \mathbb{Z}$ in the case of $X = \mathbb{R}^2 - \{0\}$). Hurewicz gave a homomorphism $\pi_{I_{i}}(X) \longrightarrow H_{i}(X) = H_{i}(X; \mathbb{Z})$ which is surjective; its hermel is the commutator subgroup $[\pi_{I}(X), \pi_{I}(X)]$ so $H_{i}(X)$ is the abelianization of $\pi_{i}(X)$. A D F Simplicial complex O-simplex 1-simplex 2-simplex 3-simplex A AB AC BC CD DE DF EF A B Z D E F n-simplex: the lettice of subsets of an (n+1)-set.

We have a chain complex $0 \xrightarrow{\rightarrow} C_2 \xrightarrow{\rightarrow} C_1 \xrightarrow{\rightarrow} C_0 \xrightarrow{\rightarrow} 0$ eg. X = 2-skeleton of a 3-simplex (i.e. surface of a solid tetra hedron) $\chi = \frac{e}{A} \frac{d}{dr} \frac{d}{dr} = \frac{d}{A} \frac{d}{dr} \frac{d}{d$ where $C_k = \{k : chains in X\}$ d = boundaryA k-chain is a Z-linear combination of k-faces of X (k-simplices) $C_{2} = \{x_{1}\alpha' + x_{2}\beta + x_{3}\gamma' + x_{4}\beta : x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{Z}\}$ Every d-simplex (d>1) is orientable. Orient $C_1 = \{x_1 a + x_2 b + x_3 c + \dots + x_6 f : x_1, \dots, x_6 \in \mathbb{Z}\}$ the faces arbitrarily $C_0 = \{x_1A + x_2B + x_3C + x_4D : x_{1,...,} x_4 \in \mathbb{Z}\}$ C_k is an additive abalian group ie. Z-module X = S ((lowe morphic top. speces) ~ R2-803 (homotopig equivalent) So we get the same algebraic invariants of \$ 8 including homology groups) $\partial_2 = \int_0^2 \begin{bmatrix} 0 & 1 & 0 \\ -1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$ as we'll point out later ∂: Ck→ Ck-1 is additive ie. ⇒ d(ru+sv)= rdu +sdv $\begin{aligned} \partial a &= D - A \\ \partial b &= D - C \\ \partial b &= D - C \\ \partial c &= B - D \\ \partial c &= B - D \\ \partial f &= a + c - f \\ \partial e &= C - B \\ \partial s &= -d + e + f \\ \partial s &= -d +$ i.e. 2 is a Z-module homeno Ck is a free Z-module reprise abedef $\begin{array}{c} a+c-f \\ = -d+e+f \\ \partial_{\alpha} = \partial(\partial_{\alpha}) = \partial(-b-c-e) \\ = -(b-c)-(b-b) - (c-b) = 0 \\ = -(b-c)-(b-b) - (c-b) = 0 \\ \end{array}$ of = B-A dd = C-A

-3 -2 -1 0 1 2 3 4
\mathbb{R}/\sim $x \sim y \iff (x = y \sigma x, y \in \mathbb{Z})$
homeomorphic homeomorphic (tre is a group,
homeomorphic $\mathbb{R}/\mathbb{Z} \stackrel{\sim}{=} S'$ quotient of top. groups. $\mathbb{R}/\mathbb{Z} \stackrel{\sim}{=} S'$ quotient of top. groups. \mathbb{R} the other not)
For any chain complex $\xrightarrow{\partial_{k+1}} C_k \xrightarrow{\partial_k} C_{k-1} \xrightarrow{\partial_{k-1}} \cdots \xrightarrow{\partial_k} C_k = 0$ $Z_k, B_k \leq C_k$ subgroups of $C_k = \{k - chains\}$ additive declia groups
$Z_1 = ker(\partial : C \rightarrow C_1) = \{k - cycles\}$
The kth homology group $H_k = \frac{Z_k}{B_k}$ Two elements $z_i z' \in Z_k$ are homologous if $z + B_k = z' + B_k \iff z - z' \in B_k$.

g. X = 2-skeleton of a 3-simplex	$0 \xrightarrow{\circ} C_1 \xrightarrow{\sim} C_1 \longrightarrow C_0 \longrightarrow 0$
(is surface of a solid tetrahedre	$H_{i} = Z_{i}/B_{i} =$
$\chi = \frac{1}{4} $	$7D$ $7 = ha 0 \cdot C = C$
A The state of the	$Z_{1} = ke_{1} \partial_{1} : C_{1} \rightarrow C_{0}$ $z_{2} = z_{1}a_{1} + z_{2}b_{1} + z_{3}c_{1} + z_{4}d_{1} + z_{5}e_{1} + z_{4}f_{5}e_{1} + z_{5}f_{5}e_{1} + z_{5}f$
A F B	$D = \frac{1}{2} = \frac{1}{2} (b - A) + \frac{1}{2} (b - C) + \frac{1}{2} (B - D) + \frac{1}{2} (C - A) + \frac{1}{2} (C - B) + \frac{1}{2} (B - A)$
Sa las l	$= (-\overline{z}_{1} - \overline{z}_{4} - \overline{z}_{6}) A + (\overline{z}_{3} - \overline{z}_{5} + \overline{z}_{6}) B + (\overline{z}_{4} + \overline{z}_{5}) (+ (\overline{z}_{1} + \overline{z}_{2} - \overline{z}_{3}) D$
Every d-simplex (d>i) D is orientable Orient "mu	ll spece of [0010-11]
the faces arbitrarily	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
X = S' (homeomorphic top. specer)	αβγδ
~ R3-803 (homotopie equivale	$ t) \qquad $
so we get the same algebraic invar	$= \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{1000} + \frac{1}{10000} + \frac{1}{10000000000000000000000000000000000$
including homology groups) as we'll point out later	$\begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} a \\ d + e \end{bmatrix} = d \begin{bmatrix} a \\ o \end{bmatrix} e \begin{bmatrix} a \\ i \end{bmatrix} + f \begin{bmatrix} a \\ o \end{bmatrix} B = \langle G \rangle$
$\partial a = D - A$ $\partial a = -b - c - e$	$\begin{vmatrix} b \\ c \\ d \\ d$
$\partial b = D - C$ $\partial \beta = -a + b + a$ $\partial c = B - D$ $\partial \gamma = a + c - f$	
$\partial e = C - B$ $\partial S = -d + e + f$ $\partial f = B - A$	$Z_1 = \langle [i], [i], [i] \rangle \cong \mathbb{Z}^3 \mathbb{H}_1 = \mathbb{Z}_1 / \mathbb{B}_1^{=0}$
	na 🔪 ko ji na [0, ji na na 🖞 ko na 👘 ko na

$H_0 = Z_0 / B_0 \cong Z \qquad H_0 = Z_0 / B_0 = \{kA + B_0 : k \in \mathbb{Z} \}$
$B_{0} = \langle A - B, A - C, A - D, B - C, B - D, C - D \rangle = \{ x_{1}A + x_{2}B + x_{3}C + x_{4}D : \pi_{1} - x_{4} \in \mathbb{Z}, \pi_{1} + \pi_{2} + \pi_{3} + \pi_{4} = D \}$ $Z = \langle A - B - C, A - D, B - C, B - D, C - D \rangle = \{ x_{1}A + x_{2}B + x_{3}C + x_{4}D : \pi_{1} - x_{4} \in \mathbb{Z}, \pi_{1} + \pi_{2} + \pi_{3} + \pi_{4} = D \}$
$Z_0 = \langle A, B, C, D \rangle$ $x_i A + x_2 B + x_3 C + x_4 D = (x_i + x_2 + x_3 + x_4)A + (-x_2 - x_3 - x_4)A + x_2 B + x_3 C + x_4 D$
$H_{z} = \frac{Z_{z}}{B_{z}} = \frac{(a+\beta)^{2}F_{z}S_{z}}{0} \cong Z \leftarrow \text{comes from (the abelianization)} \qquad B_{b}$
$H_{0} = O$ $H_{0} = Z$
If we had included the interior of the tetrahedron (X = 3-simplex) then
$0 \longrightarrow C_{3} \longrightarrow C_{4} \longrightarrow C_{7} \longrightarrow C_{7} \longrightarrow 0$ and then $H_{2}(3-simplex) = 0$ and that's no surprise since the 3-simplex is contractible.
contractible. Ho(X) = Zk where k is the number of path-connected components of X.

Reduced hor complex	mology groups	- - × × × × × - ×	$H_{k}(\mathbf{X})$		omputed	using	the	nodified	chain
•	→ C3 → C2-		A 100 A			· · · · ·	· · ·	· · · · · ·	· · · · · · ·
ζ = ξ0	-chains} =	<i>₹₹</i> * ;A;	r; eZ }	= <	A; vertices		· · ·	· · · · · ·	· · · · · · ·
	x = $\sum_{i} x_i \in$			· · · ·	· · · · · ·	· · · ·		· · · · · ·	· · · · · · ·
, (x)	\simeq $\begin{cases} H_{i}(x), \\ 2^{k-1} \end{cases}$	i≯ı -		ohere k	= no. of	path	connec	ted comp	ments in X
			V.						
	ave used and B F A e B A e B			sf S² λ					
			gulation (< o, t > 2 < e, f, g)	sf S² λ					

Homology of X = PR B F g A F F B e fig $\partial e = B - A$ $\partial f = A - B$ $\partial g = A - B$ $\partial g = A - A = 0$ π $\partial \sigma = e + f - g$ $\partial \tau = e + f + g$ $\partial \tau = e + f + g$ $\partial \tau = e + f + g$ $0 \xrightarrow{\mathfrak{d}_{=0}} C_{2} \xrightarrow{\mathfrak{d}_{1}} C_{1} \xrightarrow{\mathfrak{d}_{1}} C_{2} \xrightarrow{\mathfrak{d}_{2}} 0$ < 0,7 >2 < e,f,g >2 < A, B>2 $\partial_i \circ \partial_j = 0$ $\begin{bmatrix} -1 & 1 & 0 \\ 1 & -(& 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -(& 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $Z_i = \ker \partial_i = \langle e+f, g \rangle = \langle [0], [0] \rangle_Z = \{1 - cycles\}$ Over R. His singlify to <erf, g>R $B_{i} = im(d_{2}: C_{2} \rightarrow C_{i}) = \langle [:], [:] \rangle = \langle e+f-g, e+f+g \rangle = \langle e+f+g, 2g \rangle_{2}$ $H_{1} = H_{1}(X) = \frac{2}{3} = \frac{\left(e_{1}f_{g}\right)}{\left(e_{1}f_{1}f_{1}, 2g\right)} = \frac{\left(e_{1}f_{g}\right)}{\left(e_{1}f_{1}f_{2}, 2g\right)} = \frac{\left(e_{1}f_{1}f_{2}, 2g\right)}{\left(e_{1}f_{1}f_{2}, 2g\right)}$ $H_{0} \cong Z_{0/8}$ $= \langle AB \rangle \langle AB \rangle$ $= \langle g \rangle / \langle 2g \rangle = \mathbb{Z}_{2\mathbb{Z}}$ $H_{2} \cong Z_{2} / B_{2} \\ \cong \langle 0 \rangle / \langle 0 \rangle = 0$ using 2nd Isomorphician Theorem for Groups / Rings (R+S)/S = R/RAS

Tensoring (oren 2) with 2/27 = F2 gives H2(X; F2) Tensoring (over 2) with R gives Hk (X; R) Simplicial abomology is obtained by dualizing Ch ma Ch= Hom (G, Z) = {honcomorphisms (->Z) of additive and gps/2-modules ablitive declian group ie, Z-module $C_2 = \langle \sigma, \tau \rangle$ $C_2^* = \langle \phi, \phi \rangle$ Dualizing the chain complex 0-> C -> C -> C -> C $C_{1} = \langle e, f, g \rangle \quad C_{1}^{*} = \langle e, f, g \rangle$ $C_{0} = \langle A, B \rangle \quad C_{0}^{*} = \langle e, f, g \rangle$ gives a cochañ complex $0 \in C^* \in \frac{1}{2} \subset C^* \in \frac{1}{2} \subset C^* \subset O$ A k-cochain is a honomoopleisen of: G-72 eg. a O-cochair has the form $\phi(xA + yB) = x\phi(A) + y\phi(B)$ RIGER \$: C-7Z $(\phi \circ \psi)^* = \psi^* \circ \phi^*$ $\phi_A(A) = 1$ $0 \xrightarrow{\circ} C_{2} \xrightarrow{[!]} C_{1} \xrightarrow{[!-1]} C_{2} \xrightarrow{\circ} C_{3} \xrightarrow{\circ} V_{3}$ $\begin{bmatrix} 4 & 1 & 0 \\ 1 & -1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \stackrel{?}{=} \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ $\phi(B) = 0$ $\frac{1}{2}^{2}$ $\frac{1}{7}^{3}$ $\frac{1}{7}^{2}$ $0 \leftarrow C_2^* \leftarrow \underbrace{[i'i']}_{i'} C_1^* \leftarrow \underbrace{[i'i]}_{ool} C_2^* \leftarrow o$ $\begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 0 & -1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$

$0 \longrightarrow C_2 \xrightarrow{[i]} C_1 \xrightarrow{[i]} C_2 \xrightarrow{[i]} 0$	$\mathcal{C}^{k} = \mathcal{C}^{k}_{k} = Hom(\mathcal{G}, \mathbb{Z})$
$0 \longleftrightarrow C^{2} \xleftarrow{ \begin{bmatrix} i & i \\ i & i \end{bmatrix}} C^{1} \xleftarrow{ \begin{bmatrix} i & i \\ 0 & 0 \end{bmatrix}} 0$	$\hat{C} = \langle \sigma', \tau' \rangle$
$Z^{2} < [0], [0] > B^{2} < (1) > B^{2} < (2) > B^{2} < (2) > B^{2} = < (2) > (2) > (2) > B^{2} = < (2) > (2)$	$C' = \langle e', f', g' \rangle$
$\overline{\langle \sigma', \tau' \rangle}$, $\overline{\gamma}^{o} = \langle [1] \rangle$	$C^{\circ} = \langle A', B' \rangle$ e.g. e'(x ₁ e+ x ₂ f+ x ₃ g)
$Z = \langle [i], [b] \rangle = \langle A + B \rangle$ $= \langle e + f', e + g' \rangle$	
$H^2 = Z^2 / S^2 \cong F_2$	$Z_{3k}^{k} = H^{k} = H^{k}(X; F_{2})$
$H' = \frac{2}{B'} = \frac{1}{E_2}$	$= H_{k} = H_{k}(X; H_{z})$
$H^{\circ} = \frac{Z^{\circ}}{B^{\circ}} \cong T_{\overline{2}}$	$f_2 = \mathbb{Z}_{2\mathbb{Z}}$
$H^{*} = \frac{L}{B^{*}} = \frac{H_{2}}{B^{*}}$ $H^{*} = H^{*}(X; F_{2}) \cong F_{2}(x^{*})$ $P^{*}R$	$f_2 = \mathbb{Z}_{/2\mathbb{Z}}$
	$\mathbf{F} = \mathbf{I}_{2\mathbf{I}}$

Let R be a ring. R is graded by N= 80,1,2,3,-	- } F
$R = \bigoplus_{n=0}^{\infty} R_n$, $R_n \subseteq R$ subring, $R_n R_m \subseteq R_{n+\infty}$	· · · · · · · · · · · · · · · · · · ·
n=0 W n-homogeneous component of R	
	and a second
= AR n= {n-homogeneous poly's } =	$\langle x, x_{i} - x_{m} \rangle$
tog the de Rham complex on X (an n-manifold)	· · · · · · · · · · · · · · · · · · ·
V - Calit. K- forms on X S DEREA	$\mu^{k} = H^{k} (X; R)$
tor me V, we v we never man we we have the hold	Le Rham
Eg. R= $F[x_1,, x_m]$, f field = $\bigoplus R_n$ $n = \{n - homogeneous poly's\}$ = Eg. the de Rham complex $pn X$ (an n -manifold) $V^k = \{diff. k - forms on X\}$ $D \leq k \leq n$ For $\eta \in V^k$, $w \in V^d$ we have $\eta \cap w \in V^{k+1}$ This induces a well-defined product $H^k \times H^d \xrightarrow{\wedge} H^d$ For this we next observe : for diff. forms $w \in V^k$, $\rho \in$. V ^ℓ
(i) $d(w_{A}p) = dw_{A}p + (-)^{h}w_{A}dp$	
(ii) $\rho \wedge \omega = (-i) \omega \wedge \rho$	dx n (dy n dz) = (dy n dz) ulx
·	dx ndy = - dg nda
(iii) If either worp is exact then so is wrp (and both are closed),	
If both w and p are closed then whp is clo So $H_{de Rhom}^{*}(X; \mathbb{R})$ is a graded ring.	Sed.
So H & Rho (X; R) is a graded ring.	

Cup product for simplicial cohomology HK × H - > HK+R makes $H^{*}(X; \mathbb{Z})$ or $H^{*}(X; \mathbb{R})$ into a graded ring. To explain, let's talk about singular homology and cohomology. Singular k-chains: (k=0,1,2,3,...) ways of mapping k-simplices i-to X, not necessarily embeddings. Take an abstract k-simplex Sall subsets of 80,12,..., k? This has a geometric relization the 5 x