Math 5605 Algebraic Topology

Book 1

If X, Y are top, spaces, $f: X \rightarrow Y$ is continuous if $f'(u) \leq X$ is open whenever $U \subseteq Y$ is open. $f: X \rightarrow Y$ is a homeomorphism if f is bijertice and f, f' are continous. X = Y are homeomorphic if there exists a homeomorphism X => Y. Since $S^2 \leq \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z)$ R' # S' S' # T' = S' × S' = S' T' are compact surfaces. They are locally homeomorphic but not globally homeomorphic. $T' = S' = () = circle = \{z \in \mathbb{C} | |z| = 1\}$ (sig) S° # T² because S² is simply connected whereas T² is not. In S¹, every closed path can be contininuously shownk" to a point (homotopic to a point, i.e. mull homotopic) Eq. For every N>0, R" is homotopy equivalent to R° = {.}

a function f: [0,1] -> X such that f(0)=a, f(1)=b. biven points a, b & X (a topological space), a path from a to b All maps (unless indicated otherwise) are assumed to be continuous. [0,1] \xrightarrow{f} f(0)=a f(1)=b X f(2)=b X f(2)=b XIf X has a pith between any two of its points, then X is pith-connected, for the time being, we'll assume X is path connected. (In general, we instead define the fundamental grouppid of X.) If $\varphi: [0,1] \rightarrow [0,1]$ (necall: continuous) such that $\Psi(0)=0$, $\Psi(1)=1$ then $\varphi: \varphi: [0,1] \longrightarrow X$ is just a reparameterization of the same path and we don't distinguish it from f. If f,g: [0,1] -> X are peths such that f(1): g(0) then we can concatenate them to form a new path from from to g(1): f(w) f(r) = g(w) g(r) h $f(r) = \begin{cases} f(r) \\ g(r) \\ g(r$ のともとえ えきもちい A map [0,1] -> X (fg) h is the same path as f(gh) after reparameterization: $((f_{g})h)(t) = \begin{cases} f(4t), t \in [0, \frac{1}{4}] \\ g(4t-1), t \in [\frac{1}{4}, \frac{1}{2}] \\ h(2t-1), t \in [\frac{1}{4}, \frac{1}{2}] \end{cases} \quad (f(gh))(t) = \begin{cases} f(2t), t \in [0, \frac{1}{2}] \\ g(4t-2), t \in [\frac{1}{4}, \frac{1}{2}] \\ h(2t-3), t \in [\frac{1}{4}, \frac{1}{2}] \end{cases}$ $(s,t) \mapsto f(s,t) = f_s(t)$ t∈ (0, 2] such that f=f is. fit)=fits f=g is. fit)=gds $f_{s}(t) = a \qquad \text{for all} \\ f_{s}(t) = b \qquad s \in [0, T]$ fig are homotopic but h is not homotopic to fig f_{i} This is a homotopy from f to g We say f, g are homotopic if there is a continues. Family of paths from a to b in X, f_s ($s \in [0, 1]$) with $f_s = f$, $f_s = g$

If P: [0,1] ~> [0,1] is a map with P(0)=0, P(1)=1 homotopic to f. A homotopy from f to fog	then the	reparameterized	path	fog: [0,1]	·→χ	3
	15					
$[0,1]^2 \longrightarrow X$						
$(s_{i}t) \mapsto f((i-s)t + s(t)) = f_{s}t$)					
$f_{0}(t) = f_{1}(t)$						
$f_{1}(4) = f(9(+1))$						
$f_{s}(0) = f((1-s) + s + f(0)) = f(0)$			• • •	· · · · ·	• • • •	
-						
$f_{s}(1) = f((1-s) \cdot 1 + s \cdot g(1)) = f(1)$	6			· · · · ·		
Fix x E X. Assume X is peth connected. IT, ()	(,x) is -	the group of a	ell hom	otopy classe	's of pic	the
Fix x E X. Assume X is path connected. IT, () from xo to xo in X under concatenation. It turns on	t. m, (X, xo) \cong $\pi_{c}(X, x_{0})$) a stor	all xo, x, E	$\boldsymbol{\chi}_{i}$, ,	
This gives the fundamental group T. (X).	r tdeatid	The The (X, Xn)				
T, (TR") = 1 (toisial group).	The second second	y in m (X, Xo)	Y	$(t) = x_0 + br$	teki)	
- (C') ~ 71 (for any on one generation)		$\sum_{x} x$	$\gamma f = f'$	Y=f for	all fe m	(X, x ₀)
$\pi_i(S') \cong \mathbb{Z}$ (free group on one generation)	the inde	rse of fen, (X	, 76). 13. 	 		
Frank Er and X	* (t.) = f(Ht), with in the ne	TE U	(I)		
Fix g path in X from to to A,	F	$f\bar{f} = \bar{f}f =$	Y	A out		
An somosphism of T(X, x) ->T(X x.)	\sim					
An zomosphism ϕ : $\pi_i(X, x_0) \longrightarrow \pi_i(X, x_i)$ $\begin{array}{c} \varphi \\ \varphi \\ \varphi \\ \varphi \\ \varphi \end{array} = \overline{g}fg \qquad \phi(f_if_i)$	$() = \bar{a} f f$	$g = (\overline{g}f_ig)(\overline{g})$	F. 9)	• • • • •		
	- TT. (X, X.)	.) (<u>)</u> () ()				
· · · · · · · · · · · · · · · · · · ·						

TT, (S ²) = 1 (trivial group : all closed	paths in S ² are will-homotopic)
$S^2 \cong \mathbb{R}^2 \cup \{\infty\}$ (one-point compactification)	
R ² Soe Hatcher	for general case including possibly space filling curves
$\pi_{i}(\mathbb{R}^{2}) = 1$	$\sum_{i=1}^{n}$
T, $(\mathbb{R}^2 - \{0\}) \cong \mathbb{Z}$ punctured plane follows from the fact that $\mathbb{R}^2 \cdot \{0\}$ and S' have the same homotopy	
follows from the fact that	· · · · · · · · · · · · · · · · · · ·
$\mathbb{R} \sim (x \cdot axis) \simeq \mathbb{R}^2 - \{o\} \simeq S'$	X ~ Y : X, Y are honotopic/ have the same honotopy type / are honotopy equitivalent
$\mathbb{R}^3 \sim \{o\} \simeq S^4$	Note: this is weaken than X = Y (howeo morphic).
· retraction "def. retraction weak sens	se Hatcher writes X 2 Y for homeonorphic
· deformation retraction S	Let $A \subseteq X$ (subspace of a top. space).
· strong deformation setraction	A retraction $f: X \rightarrow A$ is a map such that $f _{A} = id_{A} = 1$, i.e. $f(a) = a$ The for all a A .
 honotopy relative honotopy 	It cut a was pride the A is a privat of X
· homotopy equivalence	For \mathbb{R}^n has a retraction to any one of its points. If $a \in \mathbb{R}^n$ then the constant map $\mathbb{R}^n \longrightarrow \{a\}$, $x \mapsto a$ is a retraction.
· · · · · · · · · · · · · · · · · · ·	K - 7 - 3 - 20 - 6 - 7 - 1 -
	If $S' \subset \mathbb{R}^2$ is the unit circle, then there is no retraction $\mathbb{R}^2 \to S'$.
	(But this may not be obvious)

A	deformation 2. f:	ion Pe	tractio	~ .14	(a 1	ho nic	top	y 4	10m	id,	x. T	to ref	raction) (1) (1)	A⊆	X .	• •							• •	۰						
ie	2. f:	[0,1]	хX	->	Ϋ́							X	A		• •	• •	• •	• •		•	•			• •			•	• •			
		en.	2	1 1-																											
		f(t,		't C			P -	1																							
		() = X			10	· ·	το -	". X.																							
	 f j(x) E A	.				f, -	is d	a . R	etract	tion .	<u> </u>	-> A	С. с.										• •				• •			
	· · · · f. (a	a) = a	fo	· all	i a'e	A .	•	• •		• •	• •		• •	• •	• •			• •	• •		• •			• •				• •		• •	
TL.	a def re	frection	a ex	ists	from	X	· +0	· A 3	⊆ <i>X</i> ,	ve	Sa.	4	• A -	15 0	i de	forme	ation	i e	act	. z	+ X	Č.	•	• •				• •		• •	٠
									. '			J .	• •	• •	• •		• •	• •			• •	•	•	• •	•	•	•	• •		• •	
· (· 7	This is e	strongi	y fle	mi i (etre	ect)		•	• •	• •			• •	• •		• •	• •	• •		• •			• •		•	•	• •			•
			_																												
Eq.	4:10	11×	R –	R R	-																C'.										
	p. ((x) =	- fr	1X		te .	a de	of. n	efra	ction	to	50	. ₹ , a -								<u>د</u>										
	• • • • * t			τιχ														. [.			N .										
	eS' ₹	(x) -	 Retre	t of	s' 1 S' 1	but	 No	t a	def	 Feet	fract	of	s'.	• •	• •	• •	• •	(- (•	•	· ·	•	•	•	· ·	•	· ·	
	€S' x	(x) - is 4	setre	て) X た of	s' 1	but	NO NO	d a	def	. re(fract	of	s',	• •	• •	• •	 		••••	- (ן א	•	••••	•	•	•	· ·	•	• •	•
fg_ ^{xe}	ES ¹	∴is 4 	retrei	t of	S ' -	but	No.	1. a.	def	i ret	frect	of	s'.	· ·	· ·	• •	• •	н н н н	• •	- (r N	•	· ·	•	•	•	· ·	•	· ·	
fg_ ^{xe}	es' *	∴is 4 	retrei	t of	S ' -	but	No.	1. a.	def	 	fract	of	s'.	· · ·	· · ·	· ·	· ·		· ·		$\Big)$	2 N 1	•	· ·	•	•	•	· ·	•	· ·	
Eg Xe A str	es' *	is a retra ct	setre f:	t d [0,1]?	s' : X -	but	No.	1. a.	def		fract	of	s'.	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·	· · ·)	ן אר י	•	· · · · · · · · · · · · · · · · · · ·	•	•	•	· · ·	•	· · ·	
Eg, Xe A str	eS' = x ong def. $f_0(x) =$	is a refra ct x	setver f: i.e.	t of [0,1]7 5 = id	s' X - x	but ->	No.	1. a.	def	. rel	fract	of	S'.	· · ·	lef.	ref	rect)	n N N	•	· · ·	•	•	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f ction	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.	def	i set	Fract	of 	S'	· · · · · · · · · · · · · · · · · · ·	def. but	ref	ract st	rong	J	ef.) ret	R		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	
Eg, Xe A str	eS' = x ong def. $f_0(x) =$	is a refract x t refra	setre f: i.e. f ction	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.	def	i ret	fract	of 	S'.	· · · · · · · · · · · · · · · · · · ·	def. but	refi	ract st	rong	<u> </u>	ef.)	M Mact								· · · · · · · · · · · · · · · · · · ·	
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.	det	e et	fræct Llu. X	• • • • • • • • • • • • • • • • • • •	S'.	· · · · · · · · · · · · · · · · · · ·	def. but	refi not	rect st	rong	<u> </u>	ef.) ret	Nect								· · · · · · · · · · · · · · · · · · ·	
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.			Fract	₽ ₽ • •		· · · · · · · · · · · · · · · · · · ·	def. but	ref. not	ract	a construction of the second sec	d,	ef.	ret	Я rect								· · · · · · · · · · · · · · · · · · ·	
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.			Fract Liu X			· · · · · · · · · · · · · · · · · · ·	def.	ref	rect			ef.) ret	N		· · · · · ·				· · · · · ·			
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.			Fract LLL X		S'	· · · · · · · · · · · · · · · · · · ·	def.	ref	ract			ef.		N		· · · · · · · · · · · · · · · · · · ·				· · · · · ·			
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.	det		Fract Litter		S'.	· · · · · · · · · · · · · · · · · · ·	lef.	ref	ract		d	ef.	net	Nact		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· ·	
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.	det		irail LLL X		S'.	· · · · · · · · · · · · · · · · · · ·	def.	ref	rect		d	ef.	ret	Nact		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·			
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.	det		iracil. [11 X		S'.	· · · · · · · · · · · · · · · · · · ·	def.	ref	rect St		d	ef.	ret	Nact		· · · · · · · · · · · · · · · · · · ·			• • • • • • • • • • • • •				
Eg, Xe A str	$f_{0} = \frac{1}{2} \int_{0}^{\infty} dx f_{0} = \frac{1}{2$	is a refract x t refra	setre f: i.e. f	t of [0,1]? S = id X-> h	S' X - X	but ->	но Х	1. a.	det		irect.		S'.	· · · · · · · · · · · · · · · · · · ·	def.	refi	ract		d	ef.	ret	Rect									

)(⊆ R ²	X= ([0,1] × 90	3 U U (Sr)	× [9,1-r])	K has a def.	ret to $A = \xi$	03×[0,1]
· ·							
This is a def strong def. There is no	. rotract but rebact. strong def. re	rot a tract X-	Q≤ f≤ <u>1</u> A			≤t≤ı	
ret \$, \$; : X -	->Y he maps.	A bomotopy	from to to to i	s a map q: [$(t_{0,1}) \times X \longrightarrow Y$	Such that f	$(0, \pi) \approx f(\pi)$
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [m fs to fr (fs a e A	$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a		(0,7) = f(x) (1,x)= f(x) f:[0,1]×X →Y
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a	homotopy -	
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [m fs to fr (fs a e A	$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a	homotopy -	
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [m fs to fr (fs a e A	$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a	homotopy -	

A homotopy equivalence from X to Y is a pair of maps X + Y
A homotopy equivalence from X to Y is a pair of maps X Y such that fog: X > X and gof: Y > Y ere homotopic to id x and id y respectively.
E3. \mathbb{R}^n is homotopy equivalent to $\mathbb{R}^o = \{\cdot\}$ (or $\mathbb{R}^n \simeq \{\cdot\}$)
$\mathbb{R}^{n} \xrightarrow{f}_{g} \{o\} \qquad f(x) = o for all x \in \mathbb{R}^{n}$ $g(o) = o \in \mathbb{R}^{n}$
$g \circ f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $f \circ g : \{o\} \longrightarrow \{o\}$
A komotopy from gof: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to id $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $h_{t}(x) = tx$, $0 \le t \le 1$, $x \in \mathbb{R}^{n}$
Not relative to any subspace necessarily.
The same argument works for any def. retraction (doesn't even have to be a strong def. retraction)
S' is not homotopic; not contractible)
If $f: X \longrightarrow Y$ where both X, Y are path-connected then f induces a homomorphism $f_{x}: \pi_{i}(X) \longrightarrow \pi_{i}(Y)$
$\alpha: [0,1] \longrightarrow X \text{gives} f_{\alpha} = f_{\alpha} \alpha: [0,1] \longrightarrow Y (g_{\alpha}f) = g_{\alpha} \circ f_{\alpha}$
If $X \simeq Y$ then $\pi_r(X) \simeq \pi_r(Y)$