

when are two covering maps of X equivalent? Say Y_1 > X, Y' +> X are covering maps Graph ie. combinatorial graph with vertices \$1,2,3,43 and edges \$81,23, \$1,33, --, \$3,43 } eg. X = X is the geometric realization of this graph bround as disjoint union of copies of [9,1] with endpoints identified as required by the picture. and have the same geometric realization although they are defferent graphs. A homomorphism of graphs $\Gamma = \Gamma'$ is a map $V(\Gamma) = V(\Gamma')$ preserving adjacency i.e. $x \sim y$ in $\Gamma \Rightarrow f(x) \sim f(y)$ in Γ' . A covering map of graphs is a homomorphism $(x,y \in V(\Gamma))$ inducing a bijection on the neighbours of each vertex of Γ are copies (and the preimage of the neighbours of each vertex $y \in \Gamma'$ are copies of the neighbours of Γ are copies of the neighbours of Γ is the t-shelpton of the nube Γ is the t-shelpton of the nube Γ is the t-shelpton of the nube Γ is Γ is the t-shelpton of the nube Γ is Γ in Γ 4',4" -->4

When are two covers of X equivalent (150morphic, i.e. essentially the same) ? Let $p: X_1 \longrightarrow X_2$, $p: X_2 \longrightarrow X_3$ be covering spaces of X_1 . We say $\theta: X_1 \longrightarrow X_2$ is an equivalence or isomorphism of the two covers if θ is a homeomorphism and $p: \theta = p_1$, i.e. $X_1 \longrightarrow X_2 \longrightarrow X_3$. Pi VPZ But what about 2 3' walnut to 4" 2" Is this equivalent to $Z \rightarrow X$? No... 3'3" ->3 Another picture of these cores 4'A" F->4

To construct an refold cover of X, created one copy of [r] = {1,2,...,r} for each vertex of X. Then for each edge of X, match up the corresponding fibring in the cover using a chosen permutation.

A triple cover Y-> X is constructed as Why is 2 more special than other positive integers (the addest prime of all)? Consider X = has many tiple covers including Y, = The covering maps Y-X and Y2-X are not equivalent. An equivalence between Y-> X and itself (automorphism of the cover) is a deck transformation. This is the same as a homeomorphism Y-> Y which preserves libes. In the example above Y-> X has 3 automorphisms (deck transformations) But Y, -> X has only one thirial) deck transformation

But Y, -> X has only one (trivial) deck transformation

In a conveited rfold cover, there are at most r deck transformations.

If equality holds, the covering space is normal or Galois.

(not the same as normal space in point set topology).

Y3 = 91 20 600 4 a

Double conters are always normal.

In the case of extensions of fields, the extension is normal.

In the case of extensions of fields, the extension is normal.

For a field extension $E\supseteq F$, the degree of the extension is [E:F]: linears of E as a vector space over F. The number of F-automorphisms of E (i.e. $\sigma:F\to E$ automorphism fixing $\sigma(a)=q$ for all $q\in F$) is at most [E:F]. If this number is equal, it's a normal or Galois extension. Extensions of degree E (quadratic extensions) are always normal.