Math 5605 Algebraic Topology

Book 3

Cup product for simplicial cohomology HK × H - > HK+l
makes $H(X; \mathbb{Z})$ or $H(X; \mathbb{R})$ into a graded ring.
To explain let's talk about singular honology and cohomology.
Singular k-chains: (k=0,1,2,3,) ways of mapping k-simplices i-to X, not necessarily embeddings.
Take an abstract k-simplex fall subsets at (0,12,12).
This has a geometric relization to X
$\Delta = \Delta^{n} = \left\{ (v_{0}, v_{1},, v_{n}) : v_{i} \geqslant 0, \geq v_{i} = 1 \right\} \subset \mathbb{R}^{n+1} (\text{ convex combinations of } e^{-}(1, 0,, 0), e_{1},, e_{n} = (0,, 0, i) \right)$
large contric coordinates
An n-chain is a formel linear combination of maps $\sigma: \Delta \longrightarrow X$. $C_n = \{n-chains in X\} = C_n(X; R)$, R any commutative ring with 1 eg. R. Z., F_2
$C^{*} = C_{h}^{*} = \sum_{n=0}^{n} \operatorname{cochains} \operatorname{in} X_{n}^{*} = \operatorname{Hom} (C_{n}, R) = \sum_{n=0}^{n} \operatorname{Hom} (C_{n}, R) = \sum_{n=0}^{n$
$ \exists: C_n \longrightarrow C_{n-1}, \exists \sigma = \sum_{i=0}^n \sigma \mid [v_0, \dots, \hat{v}_i, \dots, v_n] \qquad \qquad \exists^2 = \sigma, (\exists^*)^2 = \sigma $
$\mathfrak{T}: \mathcal{C}^{m} \to \mathcal{C}^{m}$

If $\phi \in C^k$ k-cochain, then $\phi \cup \psi \in C^{k+l}$ cochain; for any $\psi \in C^l$ l -cochain $(\phi \cup \psi)(\sigma) = \phi(\sigma [v_{\phi, \gamma}, v_k]) \psi(\sigma [v_{k}, \gamma)]$	(k+1))-chain) [v	5 : A	krl_ e]→	→) o(X Vo ₁ , 1	1600
This gives a bilinear product C* × C ⁴ → C ⁴⁴ inducing a bilinear product H* × H ⁴ → H ⁴ (cup product)		· · · ·	· · ·	· · ·	· ·	· ·	•
making $H^*(X; R)$ into a graded ring $\bigoplus H^i(X; R)$. $i \neq 0$	· · ·	· · · ·	· · · ·	· · ·	· ·	· · ·	•
Eq. $X = P^{n}R$, $R = F_{2} = \mathbb{Z}/2\mathbb{Z}$, $H^{i}(X; F_{2}) \cong \{F_{2}, 0 \le i \le P^{n}R = \{I - dimin \}$ subspaces of \mathbb{R}^{n+1} $3 = S^{n}/$ antipoldity.	<pre></pre>	· · · ·	· · ·	· ·	· ·		•
	PR	s û FFi	prieilelle ? n is	edd .	· · · · · · · · · · · · · · · · · · ·	· · ·	•
$H^*(X; \mathbb{F}_2) \cong \mathbb{F}_2[x]/(x^{++})$ Additively: { $a_1+a_2x^+ + a_2x^+ + $	n ≽	2 : ·	· · ·	· · ·	· ·	· · ·	•
Borsule- Man Theorem : There is no antipodel map $S^{n-1} \rightarrow S^{n-1}$ for Proof is lay contradiction i.e. $f(-x) = -f(x)$		· · · ·	· · · ·	· ·	· ·	· · ·	•

Suppose f: S Then & indu	-> S" is antig cer a well-defined	$ \begin{array}{ccc} \text{sodel.} & (f(-x) = \\ \text{uap} & P^{"}R \xrightarrow{f} & P^{"} \end{array} \end{array} $	f(x)	π, (P [*] ℝ), ≅	2/2Z
· · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	±x ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ± ±	f(x)	p^* maps a	generator of
f induces t	$F^*: H^*(P^*R; R_2) - $	→ H*(P"R; Æ)	mapping x		(R) to a generator Tr. (P"R)
	₩ ₩_[x]/ _(x")	Hz (x) (x HI)			· · · · · · · · · · ·
· · · · · · · · · · · · ·	$\chi^n \longrightarrow \chi^n$; contradiction	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · ·	· · · · · · · · · · ·
DF A is an additi	ve abolian gp then	$A \cong \mathbb{Z} \oplus \mathbb{T}(A) \text{with} A \cong \mathbb{Z} \oplus \mathbb{T}(A) \mathbb{Z} \oplus \mathbb{T}(A)$	here T(A) = torsi	on subgp of A =	Edements of A of finite order }
k = rank A = di For any chain compl we have homeloan	$\begin{array}{ccc} n & A & . \\ lev & C_n \xrightarrow{\partial_{n-1}} C_{n-1} \xrightarrow{\partial_{n-1}} & \cdots \\ groups & H_n = ker \end{array}$	$\Rightarrow C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \partial$	o (oer	Q or R) H (X:Z) = rank H.	(X:D) = rank H. (Xir
and Euler character $\gamma(X) = 2$	istic istic (-1)' namk H _i (X) =	Étéraule C:	$C_{n} \xrightarrow{C_{n-1}} C_{n-1}$	$\dim C_n = \dim \ker$ $\dim H_n = \dim \mu$	r d _n +. dim im O _n
eg χ(S [*]) =	° 4-6+ 4 = 2				
4		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·	· · · · · · · · · · ·

Closed 2-manifolds	i.e. connected	compact	2-manifolds	without	boundary	- are	comptetely	classified	
Closed 2-menifolds using Euler character 2 T ² P	teristic and or R K	ientability (Yes/No)	.	· · · · · ·				· · · · · · ·	•
	0								•
dim Ho 1 1	t					• • • •			
X(X) 2 0	<_p			· · · · · ·	· · · ·	· · · · ·	· · · · ·	· · · · · · ·	•
	₩ PR 3+2=2	1 miles	K Klein	1	· · · · ·	· · · · ·	· · · · · ·	· · · · · · ·	•
(-3+2=0 °	-	2-3+2=	-1 -1 -	-3+2=0	· · · · ·	· · · · ·	· · · · · ·	· · · · · · ·	•
a a Trans a serie Trans	· · · · · T [*] · · · ·	-2				· · · · ·	· · · · · ·	· · · · · · ·	•
$\chi(S_1 \# S_2) = \chi(S_1) + \chi(T_2 + T_2) = \chi(T_1 + T_2) = \chi(T_1 + T_2) = \chi(T_1 + T_2) = \chi(T_1 + T_2)$	$(\lambda_2) - 2$	for any = 0+0-	. two closed 2 = −2	surtaces	جو ¹¹ ، کر	· · · · ·	· · · · · ·	· · · · · · ·	•
	e de la companya de l		χ(τ*#…#	T)= 2-	2g - 1 - 1	9 .	genue of Sn	orientable	•
$\gamma(\hat{PR} \neq \hat{PR}) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$			· · · · · · ·						•
									•

Exact sequences $\longrightarrow C_n \longrightarrow C_n \longrightarrow ker \partial_n = im \partial_m$
$0 \rightarrow c \rightarrow 0$ is exact iff $(= 0)$
$0 \rightarrow A \rightarrow 7B \rightarrow 0$ is exact $\mathbb{R}^{2} A \cong B$
0->A->B->C->O is exact (short exact) iff C= B/A
If f: X -> X is an endomorphism of an abel. gp. X (or vector space) (at least in an abelian category) some important short exact sequences are
$0 \longrightarrow \ker f \longrightarrow X \longrightarrow f(x) \longrightarrow 0$
$0 \leftarrow coherf \leftarrow X \leftarrow f(x) \leftarrow 0$ If $f: X \rightarrow Y$ then $cohert = f(x)$
If > A -> B -> C -> O and O -> C -> B -> E -> are exact then we get an exact seq. AA
B = P D
B = P D
$0 \longrightarrow \ker f \longrightarrow X \xrightarrow{f} X \longrightarrow \operatorname{color} f \longrightarrow 0 \text{is exact.}$
0 -> keef -> X = X -> color f -> 0 is exact. If X is a fin diml vector space over F then the Euler char. of this sequence is 1 1 5 5 V + dim X - dim huf = 0
0 -> keef -> X = X -> color f -> 0 is exact. If X is a fin diml vector space over F then the Euler char. of this sequence is 1 1 5 5 V + dim X - dim huf = 0
0 -> kerf -> X -> colerf -> 0 is exact. If X is a fin divid vector space over F then the Eriler char. of this sequence is

Theorem: Let S,T: X-7 X be operators (1in. transf). Of the three operators S,T, ST, then whenever two are Fredholm then so is the third and in this case ind ST = ind S + ind T. (or abd. gps) S,T: X->X we have an exact sequence In general (i.e. for any lin. transf. 0 -> kerT -> kerS -> cokerT -> cokerST -> cokerST -> cokerS -> 0 So its Euler characteristic is zero. ie. indS + ind T - ind ST = 0. Snake Lemma In an abel. category we have a commitative diagram with exact rows then we have a six-term exact seq. A->B-d>C->O $\rightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C'$ ker a --- > ker l -- > ker c -> coher a -> coher lo --> coher c. bon a -> bon bon bon c -> ken c e e v A->B-dre-ナの 0 -> A' -> B' - 9'> C' polera -> cokub -> cokur c

Group Cohomology. : used in the study of group extensions
If 6 and H are groups then an extension of H by G is a group X giving
an exact sequence
Note: Groups are not necessarily exclime. We are asking for a new group X having a normal subgp $\stackrel{\sim}{=} H$ st. $X_H \stackrel{\sim}{=} G$ G on top, H on the bottom.
Trivial: X = G × H. (Split extension)
C is now an arbitrary group and A is an abalian group (G multiplicative; A additive notation) on which G acts (each geG gives $g \in GL(A)$ (automorphisms of A as an abal, gg or \mathbb{Z} -module) $(g,g_z)(a) = g(g_z(a));$ $g(a+b) = ga + gb;$ $1a = a$. $G \xrightarrow{homo}$ Ant $A = GL(A)$ (fixed) We construct an extension of A by G i.e. an exact sequence of gps $1 \longrightarrow A \longrightarrow \widehat{G} \longrightarrow G \longrightarrow 1$ i.e. \widehat{G} is a gp with normal subgp. iso to A with $\widehat{G}_A \cong G$.
We construct an extension of A by & i.e. an exact sequence of gps
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
We construct an extension of A by 6 i.e. an exact sequence of gps $1 \rightarrow A \rightarrow \hat{G} \rightarrow G \rightarrow 1$ i.e. \hat{G} is a gp with normal subgp. do to A with $\hat{G}_A \cong G$ $\downarrow \downarrow \alpha \qquad \downarrow \beta \qquad \downarrow \gamma \qquad \downarrow \beta$ $1 \rightarrow A \rightarrow \hat{G} \rightarrow G \rightarrow 1$ Two extensions \hat{G} \hat{G} are Equivalent if we have a commutative diagram as shown with x, β, γ isom- orphisms of groups (with exact rows), Note that the action of G on A is fixed throughout. Cohomology of groups is the tool for this
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $

$ \begin{array}{c} \overset{{}_{\scriptstyle \leftarrow}}{\scriptstyle \ \ \ \ \ \ \ \ \ \ \ \ \$	an exact sequence of additive abel. gps where $C^{k} = C^{k}(G; A)$ is the abel. gp. i.e. Z-module
GXGX XG i.e. & tuples & G	Given $a \in C'$ i.e. $a \in A$, $Sa \in C'$ is $Sa : G \longrightarrow A$ Given $f \in C'$ i.e. $f : G \rightarrow A$ $g \longmapsto ga - a$ Construct $Sf \in C'$ i.e. $(Sf) : G \times G \longrightarrow A$ $(Sf) (g, h) = g f(h) - f(gh) + f(g) \in A$.
Check: $C \stackrel{*}{\leftarrow} C \stackrel{*}{\leftarrow} C \stackrel{*}{\leftarrow} C \stackrel{*}{\circ} S \stackrel{*}{=} 0 \stackrel{?}{\sim}$ Take $a \in C \stackrel{*}{=} A$. $(Sa): C \stackrel{*}{\to} A$ (Sa)(g) = ga - a.	Given $f \in C^2$ iv. $f: 6x6 \rightarrow A$ (onstruct $(Sf): Gx6 \times G \rightarrow A$ (Sf)(g,h,k) = gf(h,k) - f(gh,k) + f(g,hk) - f(g,h) See p.2 bottom of handont for $S: C^k \rightarrow C^{h+1}$ in general
$\begin{aligned} \hat{S}_{a} : G \times G & \longrightarrow A \\ (\hat{S}_{a}) (f,g) &= f(\hat{S}_{a})(g) - (\hat{S}_{a})(f_{g}) + \hat{S}_{a}(f) \\ &= f(ga - a) - (f_{a})(a) - a) + (fa - a) \\ &= fga - fa - fga + a' + fa - a' \end{aligned}$	
Classify extensions 1 -> A -> Ĝ -> G -> 1 i.e. Ĝ is a group with normal subgp A w i.e. A has a complementary subgp in Ĝ So H'(G; A) classifies the complementary subggrs	where G is a group acting on an abelian $gp A$ where G is a group acting on an abelian $gp A$ with $G/A \cong G$, using cohomology. Start with a split extension G acts on the subgps complementary to A by conjugation. In up to conjugacy.

Fix an action of G on A.	$a(g,g_{e}) = (ag_{i})g_{e}$	· · · · · · · · · · · · · · ·	here A is a right 6-undule.
	a 1 = a t id of G		
È is isomorphic to the	(a+a')g = ag + a'g	for a a'eA; 1,	g, g, g, € G.
Sebidirect product AXG = 7			G X A for left
$(a_{1}, g_{1})(a_{2}, g_{2}) = (a_{1}g_{1}+a_{2}, g_{1}g_{2})$	identify (0, 1)		action
Attornative notation : $A \times G = \{ \begin{bmatrix} g & o \\ a & i \end{bmatrix} \}$	$q \in A, g \in G$		Constanceste at A
$\begin{bmatrix} g_1 & 0 \\ a_1 & 1 \end{bmatrix} \begin{bmatrix} g_2 & 0 \\ a_2 & 1 \end{bmatrix} = \begin{bmatrix} g_1 & g_2 \\ a_2 & 1 \end{bmatrix}$	°]	· · · · · · · · · · · · · · · · · · ·	Complements of A in & are given by 1-cocycles.
$C^2 \leftarrow S' - C' \leftarrow S^{\circ} - C^{\circ} \leftarrow C^{\circ} \leftarrow C^{\circ}$		$A_{1}^{\prime\prime} (Sa)(g) = ag - a$	
How do we construct a sul Any such subgp H < AXG	legp of ANG complex	neutory to A ?	5 [9 0 7
Any such subgp H < AXG	has the form { (tg,	g) g∈ G } =	2 L tg 1 J gee
Here $g \xrightarrow{g} t_g$, $G \longrightarrow A$ as it is a subgp. eg. $t_i =$	This will antomatically	le a complement	to A as long
$\begin{bmatrix} \mathbf{g} & \mathbf{o} \\ \mathbf{f}_{\mathbf{g}} & \mathbf{i} \end{bmatrix} \begin{bmatrix} \mathbf{g}' & \mathbf{o} \\ \mathbf{f}_{\mathbf{g}'} & \mathbf{i} \end{bmatrix} = \begin{bmatrix} \mathbf{g} & \mathbf{o} \\ \mathbf{f}_{\mathbf{g}'} & \mathbf{f} \end{bmatrix}$	ie. $t_{33} = t_{33} + t_{33} + s_{33} + s_{33}$	g,g') = - f(gg') + f(g)g'+ -	f(g') = 0,

When are two complements of A conjugate in & ? G = ANG	
If A has complementary subgps H, Hz < G given by H = ? (f.g), g) : g & G } ,	$f \in Z'(G; A)$
when are H, Hz anjugate in & ?	$(Sf_{i})(g_{i},g') = f_{i}(g') - f_{i}(gg') + f_{i}(g)g')$ = 0
$\begin{bmatrix} g \\ a \\ i \end{bmatrix} \begin{bmatrix} g' \\ -ag' \end{bmatrix} = \begin{bmatrix} g' \\ 0 \\ i \end{bmatrix}$ $\begin{bmatrix} g \\ -ag' \end{bmatrix} \begin{bmatrix} g' \\ -ag' \end{bmatrix} = \begin{bmatrix} i \\ 0 \\ i \end{bmatrix}$ $U_{SR} \begin{bmatrix} g \\ i \end{bmatrix} \in \widehat{G} (a, g fixed) fo conjugate H_{i} :$	f(gxg') = f(g)xg' + f(xg') $= f(g)xg' + f(xg')$ $= f(g)xg' + f(xg') + f(g')$ $= f(g)xg' + f(xg') - f(g')$
$\begin{bmatrix}g & 0\\ a & 1\end{bmatrix}\begin{bmatrix}g' & 0\\ -ag' & 1\end{bmatrix} = \begin{bmatrix}g \times & 0\\ a \times f(x) & 1\end{bmatrix} = \begin{bmatrix}g \times & 0\\ -ag' & 1\end{bmatrix} = \begin{bmatrix}g \times & g'' & 0\\ -ag' & 1\end{bmatrix} = \begin{bmatrix}$	$= f(g) \times g' + f(x)g' - f(g)g'$
$f_{2}(g \times g^{-1}) = q \times g^{-1} + f(\omega)g^{-1} - qg^{-1} = f_{2}(\omega)g^{-1} + f_{2}(\omega)g^{-1} - f_{2}(\omega)g^{-1}$	•
$a_{x} + f_{1}(x) - a = f_{2}(g)x + f_{2}(x) - f_{2}(g)$ $f_{1}(x) - f_{1}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{2}(x) - f_{1}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{3}(x) - f_{1}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{3}(x) - f_{3}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{3}(x) - f_{3}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{3}(x) = (a - f_{2}(g))(x)$ $f_{3}(x) = (a - f_{3}(g))(x)$	f∈ C' ie. f: G→A f(xy)= f(x)y + f(y)
ie ag = a for all a c A, ge6) then & is a homo. 6-7 A.	f(i) = f(i) = f(i) + f(i) $\Rightarrow f(i) = 0$
Extensions of A by G correspond to elements of H'= Z'/B'. f E B' (1-coboundary) iff f(x) = ax-a = Ga)(x), QEA. (principal crossed homeomorphisms)	$\begin{array}{l} 0=f(1)=f(gg')=f(gg')+f(g)\\ \Rightarrow f(g')=-f(g)g'\\ \end{array}$
(inner derivations)	

Eq. Classify extensions of $C_q = \langle x : x^1 = 1 \rangle$ by $C_z = \langle y : y^2 = 1 \rangle$ $1 \longrightarrow C_q \longrightarrow \widehat{G} \longrightarrow C_z \longrightarrow 1$ Two cases depending on the action of C_z on C_q Case I: y inverts π i.e. $y\pi y' = x' = \pi^3$ (H') = 2 = how many complementary subaps of G up to conjugacy C_q has four complementary subaps in $\widehat{G} \cong$ diledral gp of order 8. $(y), \langle x^2y \rangle$ are conjugate to each other in $\widehat{G} \cong$ Not conjugate. $\langle xy, \langle x^2y \rangle$ are conjugate to each other in $\widehat{G} \ll$	$\begin{aligned} x &= (1234) \\ y &= (14)(23) \\ x^2y &= (12)(34) \\ xy &= (13) \\ x^3y &= (24) \end{aligned}$
Case II: y commutes with x. $xy = yx$ $\hat{\zeta} = \zeta_{x} \zeta_{z}$ (x) has two complements in $\hat{\zeta}$, namely $\langle y \rangle$, $\langle x^{2}y \rangle$. They are not conjugate.	
How many extensions $1 \rightarrow C_q \rightarrow \widehat{G} \rightarrow C_q \rightarrow 1$ are there up to equivalence, require the extension to be split? (Split \rightleftharpoons there is a complementary subgp for eq. C_g is a nonsplit extension of C_q by C_q . Case I: C_q acts trivially on C_q . Here there are two extensions: C_g and $C_q \times C_q$ (nonsplit) (caplit). Case II: C_q acts northrivially on C_q . Here there are two extensions: dihedral of orders, quatern (split).	if we don't () ion gp of only 8 nonsplit).

The Schur- Eassenhaus Theorem Given groups G, N with G acting N (the action of G on N is fixed) we consider exact sequences of groups 1 ---- N ---- G ---- 7 G i.e. extensions of N by G ie. groups & having a normal subgp isomorphic to N. IF INI, ICI are relatively prime them H'= 1 and H²=1. This says that the extension splits i.e. & has a subgp complementary to N and any two complements of N are conjugate in &. Note: We do not require N to be abelian. If N is abolian then the formulas are simpler. Even singler This generalizes Sylow theory; N and its complements are Hall subgps. $\mathbf{H} \in \mathcal{N} \subset \mathbb{Z}(G)$ (central extension of N by G) A loop is a set L with a binary operation (r, y) -> xy such that any two of x, y, xy caniquely determine the other. We also assume $\exists s \in L$ such that s = x = x for all $x \in L$ A Bol loop satisfies ((xy)z)y = x((yz)y) for all $x, y, z \in L$. A Hadamard métrix is an Ara matrix H with entries II such that HIHT = nI = HTH eg. H = [10] gives a (regular) double cover of Kag . A complex Hadamard nativix is an nxn matrix H with every estimes in S'= 920 (: 121=13 Such that HH+= nI= H*H

•	9-	Ľ -	cl	asa	sifi	ied	-	Con	col	ey	•	Ho	d.	n	rat	ri	Ce s	•	w	îft	an	4	urf	0	-	pli	sn	-	8	Bu	P		wh	ich	iš		do	-ble	1	for	zw	siti	e
	9.	•	ro	wς	: :	•	•	•	÷.	•	•	•	• •			•	•	•	• •		•	•	•	• •	•		•	•			•	•				• •	•	•	•			•	
•	•				•		•						• •					•	•			•						•					•			•	•						• •
•	•				•						•	•							•				•						•							•	•			•			• •
•	•	•			• •					•	•	•	•				•		• •				•	• •	•				•				•		•	• •			•	•	•		• •
•					• •					•									• •					• •									•			• •	•				•		• •
•					• •					•									• •					• •									•			• •	•				•		• •
•					• •														• •					• •					•							•	•				•		• •
•					• •							•	•						• •					• •									•			• •							• •
•					• •							•	•						• •					• •									•			• •							• •
																			• •														•			• •	•						• •
																			• •																								• •
																			• •																								• •
					• •																															• •							• •
					• •																															• •							• •
					• •														• •																	• •				•			