Math 5605 Algebraic Topology

Book 1

If X, Y are top, spaces, $f: X \rightarrow Y$ is continuous if $f'(u) \leq X$ is open whenever $U \subseteq Y$ is open. $f: X \rightarrow Y$ is a homeomorphism if f is bijertice and f, f' are continous. X = Y are homeomorphic if there exists a homeomorphism X => Y. Since $S^2 \leq \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z)$ R' # S' S' # T' = S' × S' = S' T' are compact surfaces. They are locally homeomorphic but not globally homeomorphic. $T' = S' = () = circle = \{z \in \mathbb{C} | |z| = 1\}$ (sig) S° # T² because S² is simply connected whereas T² is not. In S¹, every closed path can be contininuously shownk" to a point (homotopic to a point, i.e. mull homotopic) Eq. For every N>0, R" is homotopy equivalent to R° = {.}

	•	• •				• •		• •	1		• •		•	•	• •	•	• •		• •	•	• •			• •		*	• •	
	•	• •				• •		• •	•				• •		•		• •	•					•	• •		•	• •	
	•	• •		• •		• •		• •	•		• •				•		• •		• •	•	• •		•	• •		•	• •	
	•					• •		• •									• •										• •	
													• •													•	• •	
													• •													•	• •	
	•	• •				• •																					• •	