Math 5605 Algebraic Topology

Book 1

If X, Y are top, spaces, $f: X \rightarrow Y$ is continuous if $f'(u) \leq X$ is open whenever $U \subseteq Y$ is open. $f: X \rightarrow Y$ is a homeomorphism if f is bijertice and f, f' are continous. X = Y are homeomorphic if there exists a homeomorphism X => Y. Since $S^2 \leq \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z)$ R' # S' S' # T' = S' × S' = S' T' are compact surfaces. They are locally homeomorphic but not globally homeomorphic. $T' = S' = () = circle = \{z \in \mathbb{C} | |z| = 1\}$ (sig) S° # T² because S² is simply connected whereas T² is not. In S¹, every closed path can be contininuously shownk" to a point (homotopic to a point, i.e. mull homotopic) Eq. For every N>0, R" is homotopy equivalent to R° = {.}

a function f: [0,1] -> X such that f(0)=a, f(1)=b. biven points a, b & X (a topological space), a path from a to b All maps (unless indicated otherwise) are assumed to be continuous. [0,1] \xrightarrow{f} f(0)=a f(1)=b X f(2)=b X f(2)=b XIf X has a pith between any two of its points, then X is pith-connected, for the time being, we'll assume X is path connected. (In general, we instead define the fundamental grouppid of X.) If $\varphi: [0,1] \rightarrow [0,1]$ (necall: continuous) such that $\Psi(0)=0$, $\Psi(1)=1$ then $\varphi: \varphi: [0,1] \longrightarrow X$ is just a reparameterization of the same path and we don't distinguish it from f. If f,g: [0,1] -> X are peths such that f(1): g(0) then we can concatenate them to form a new path from from to g(1): f(w) f(r) = g(w) g(r) h $f(r) = \begin{cases} f(r) \\ g(r) \\ g(r$ のともとえ えきもちい A map [0,1] -> X (fg) h is the same path as f(gh) after reparameterization: $((f_{g})h)(t) = \begin{cases} f(4t), t \in [0, \frac{1}{4}] \\ g(4t-1), t \in [\frac{1}{4}, \frac{1}{2}] \\ h(2t-1), t \in [\frac{1}{4}, \frac{1}{2}] \end{cases} \quad (f(gh))(t) = \begin{cases} f(2t), t \in [0, \frac{1}{2}] \\ g(4t-2), t \in [\frac{1}{4}, \frac{1}{2}] \\ h(2t-3), t \in [\frac{1}{4}, \frac{1}{2}] \end{cases}$ $(s,t) \mapsto f(s,t) = f_s(t)$ t∈ (0, 2] such that f=f is. fit)=fits f=g is. fit)=gds $f_{s}(t) = a \qquad \text{for all} \\ f_{s}(t) = b \qquad s \in [0, T]$ fig are homotopic but h is not homotopic to fig f_{i} This is a homotopy from f to g We say f, g are homotopic if there is a continues. Family of paths from a to b in X, f_s ($s \in [0, 1]$) with $f_s = f$, $f_s = g$

If P: [0,1] ~> [0,1] is a map with P(0)=0, P(1)=1 homotopic to f. A homotopy from f to fog	then the	reparameterized	path	foq: [0,1]	·→χ	3
	15					
$[0,1]^2 \longrightarrow X$						
$(s_{i}t) \mapsto f((i-s)t + s(t)) = f_{s}t$)					
$f_{0}(t) = f_{1}(t)$						
$f_{1}(4) = f(4(+))$						
$f_{s}(0) = f((1-s) + s + f(0)) = f(0)$				· · · · ·	• • • •	
$f_{s}(1) = f((1-s) \cdot 1 + s \cdot f(1)) = f(1)$	6			· · · · ·		
Fix x E X. Assume X is peth connected. TT, ()	(,x) is -	the group of a	ell hom	otopy classe	's of pic	the
Fix x E X. Assume X is peth connected. IT, () from xo to xo in X under concatenation. It turns on	t. m, (X, xo) \cong $\pi_{c}(X, x_{0})$) a stor	all xo, x, E	$\boldsymbol{\chi}_{i}$, ,	
This gives the fundamental group T. (X).	r tdeatid	The The (X, Xn)				
T, (TR") = 1 (toivial group).	The second second	y in m (X, Xo)	Y	$(t) = x_0 + br$	tebi	
- (C') ~ 71 (for any on one generation)		$\sum_{x} x$	$\gamma f = f'$	Y=f for	all fe m	(X, x ₀)
$\pi_i(S') \cong \mathbb{Z}$ (free group on one generation)	the inde	rse of fen, (X	, 76). 13. 	 . .		
A Example X	* (t.) = f(Ht), with in the ne	TE U	(1)		
Fix g path in X from to to A,	F	$f\bar{f} = \bar{f}f =$	Y	A outh		
An somosphism of T(X, x) ->T(X x.)	\sim					
An zomosphism ϕ : $\pi_i(X, x_0) \longrightarrow \pi_i(X, x_1)$ $\begin{array}{c} \varphi \\ \varphi \\ \varphi \\ \varphi \\ \varphi \end{array} = \overline{g}fg \qquad \phi(f_if_i)$	$() = \bar{a} f f$	$g = (\overline{g}f_ig)(\overline{g})$	F. 9)			
	- TT. (X, X.)	.) (<u>)</u> () ()				

TT, (S ²) = 1 (trivial group : all closed	paths in S ² are will-homotopic)
$S^2 \cong \mathbb{R}^2 \cup \{\infty\}$ (one-point compactification)	
R ² Soe Hatcher	for general case including possibly space filling curves
$\pi_{i}(\mathbb{R}^{2}) = 1$	$\sum_{i=1}^{n}$
T, $(\mathbb{R}^2 - \{0\}) \cong \mathbb{Z}$ punctured plane follows from the fact that $\mathbb{R}^2 \cdot \{0\}$ and S' have the same homotopy	
follows from the fact that	· · · · · · · · · · · · · · · · · · ·
$\mathbb{R} \sim (x \cdot axis) \simeq \mathbb{R}^2 - \{o\} \simeq S'$	X ~ Y : X, Y are honotopic/ have the same honotopy type / are honotopy equitivalent
$\mathbb{R}^3 \sim \{o\} \simeq S^4$	Note: this is weaken than X = Y (howeo morphic).
· retraction "def. retraction weak sens	se Hatcher writes X 2 Y for homeonorphic
· deformation retraction S	Let $A \subseteq X$ (subspace of a top. space).
· strong deformation setraction	A retraction $f: X \rightarrow A$ is a map such that $f _{A} = id_{A} = 1$, i.e. $f(a) = a$ The for all a A .
 honotopy relative honotopy 	It cut a was pride the A is a privat of X
· homotopy equivalence	For \mathbb{R}^n has a retraction to any one of its points. If $a \in \mathbb{R}^n$ then the constant map $\mathbb{R}^n \to \{a\}$, $x \mapsto a$ is a retraction.
· · · · · · · · · · · · · · · · · · ·	K - 7 - 3 - 20 - 6 - 7 - 1 -
	If $S' \subset \mathbb{R}^2$ is the unit circle, then there is no retraction $\mathbb{R}^2 \to S'$.
	(But this may not be obvious)

A defer	mation 1	retracti	and is	(a ne		1.1	1.1	1. TY	("	- Line	1.2.1	AS	= <u>^</u> • • •														
ie.	mation (f: [0,1]	1 × X		×χ						X-	A .							• •		• •							
			i i Produ	• •	• •	• •	• •	0 0	• •	• •	• •	• • •			• •			• •		• •			• •		• •		•
	+(t	= (x ₁ ;	$\frac{1}{t}$	• •			• •		• •		• •	• • •				• •		• •	•	• •	•	•	• •				
	$f_o(x) =$	х		j.€.	f,	= 1d	X																				
	f, (x) e	A			₀ ₽	· is	.4 .1	etract	ie-	X>	• A .																
	f(a) =	4 fo	r all	ae	A :	• •	• •	• •	• •		• •	• • •	• •		• •			• •	•	• •			• •		• •	•	
If a d	of retract	ion or	ists -	from	۰χ -	to t	۲ X ک	- ve	San	<u>, '</u> ', ∕	f is	a di	forma	tion	eta	f	of 1	κ÷.	•	• •	•		• •		• •		
1				· · ·	$\frac{1}{4}$		'	• •	· · ·	J · · ·	• •	• • •	• •		• •			• •		• •	•	•	• •		• •		
(This	is fron	ger Th	en r	etrac	λ)																						
																	1 -										
Eg f	; [o,1])	×./R. -	₹ R				. , .	1.		s s	• •	• • •	• •		• •		2	• •		• •			• •		• •		
				-			retra	ctron	40	- 2 0 [/		<u> </u>										
	`₽́.(x)	= (1	-t) X	1 T F	5 4	aut																					
	f _t (x)	= (1	-t) x -t	- is 1	s a 1. +	wat	a do	6 🖬	met	of S	•	• • •					\mathcal{A}	• •					• •				
Eg xes'	f _t (x) x is	= (1 4 cetre	-t)x ct of	s' 1	s a but	not a	e de	f. ret	ract	of S	•		• •						•	• •	•	•	•••	•		•	
	່ ກ ຳເຮັດ ເບີດ ເບີດ	a setu	et of	S' - 1 	but	not d	e de	f. re t	ract	of S	•	· · ·	· · ·		· · ·			7		· ·	•	•	· · ·	•	· ·	•	•
Eg XES' A strong a	່ ກ ຳເຮັດ ເບີດ ເບີດ	a setu	et of	S' - 1 	but	not d	e de	f. ret	ract	of S	•	· · · ·	· · ·					7	•	· · ·	•	•	· · ·	•	· · ·	•	•
A strong a	x is def. netre	a petra ct S:	ct of [0,1]×	s' 1 X-	but	not d	e de	f. ret	ract	of S		· · · ·	· · ·					י אר אר אר		· · ·	•	•	· · ·	•	· · ·	•	•
A strong of fo	* is daf. retre (*) = *	a active act S: i.e.	et of [0,1]× R = id.	s' 1 x -	but	not d	e de	f. eet	ract.	of S		lef	. refr	act				7		· · · · · · · · · · · · · · · · · · ·	•	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·		• • • •
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X	e de		ract	of S		let but	refr	act		def	. 10	e A tract		· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·		
A strong a fo	* is daf. retre (*) = *	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X			ract	ef S ef S i i i i i i i i i i i i i i i		def but	. refn not	act		def	. 10	7 Ivac (· · · · · · · · · · · · · · · · · · ·		•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X			rac1	ef S ef S i i i i i i i i i		de f but	. refn not	act	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	def		e Fract							 . .<		
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X			ract			def	, refn not	act	-7	def		- 7 - 7 		· · · · · · · · · · · · · · · · · · ·					 . .<		
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X			rect	€ S 		def	, rela	act	F7	def		T tract					· · · · · ·				
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X				 of S a a<th></th><th>Jef but</th><th>. refo</th><th>act</th><th></th><th>def</th><th>. re</th><th>T Iract</th><th></th><th>· · · · · · · · · · · · · · · · · · ·</th><th></th><th></th><th>· · · · · ·</th><th></th><th></th><th></th><th></th>		Jef but	. refo	act		def	. re	T Iract		· · · · · · · · · · · · · · · · · · ·			· · · · · ·				
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X				€ € S • • • • • • • • • • • • • • •		def	, refn not	act		def	. 100	T tract		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·				
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X				€ € S		de r but	rela not	act		def	. 120	e N Iract									
A strong a fo	x is def. retre (x) = x is a retr	a actua ict f: i.e. raction	ct of [0, 1]× { = id X→ A	s' 1 x	but · · · · · · · · · · · ·	x X				 of S a a<th></th><th>Jef but</th><th>, refn not</th><th>act</th><th></th><th>def</th><th></th><th>r tract</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th>		Jef but	, refn not	act		def		r tract									

) ⊆ R ²	X= ([0,1]	x 903) U	\cup ($r_{x} [0, 1-r]$) $\in Q \cap [0,]$	K has a def. A	et to $A = \xi o$	}×[0,1]
· ·						
This is a de strong da There is no	ef . notmact f. notmact . o strong del	but not a	0≤ 1 ≤ <u>1</u> x→a		$\frac{1}{2} \leq$	t<1
					Pr	
ret \$, f, : x	->Y he	maps. A bome	stopy from to to f,	is a map f: [0	beformation) 1] $\times X \rightarrow Y$	such that $f(0, \pi) = f(x)$ $f(1, \pi) = f(x)$
IF A S X is such that	is any subsp f _t (a) is i	maps. A bome nee, a homoti dependent of - (constant)	opy elective to A te [0,1] for all	("continuous is a map f: [0, from fo to f; (-fo, a e.A	$f(t_{y,x}) = f_{y}(x)$ $f_{y}: X \longrightarrow Y$ is a	Such that f(0,x) = f(1) f(1,x) = f(x) homotopy f: [0,1] x X -> Y
IF A S X is such that	is any subsp f _t (a) is i	maps. A bome nee, a homoti dependent of - (constant)	opy elective to A te [0,1] for all	is a map f: [0]	$f(t_{y,x}) = f_{y}(x)$ $f_{y}: X \longrightarrow Y$ is a	homotopy f: [0,]xX ->)
IF A S X is such that	is any subsp f _t (a) is i	maps. A bome nee, a homoti dependent of - (constant)	opy elective to A te [0,1] for all	("continuous is a map f: [0, from fo to f; (-fo, a e.A	$f(t_{y,x}) = f_{y}(x)$ $f_{y}: X \longrightarrow Y$ is a	homotopy f: [0,]xX ->)
IF A S X is such that	is any subsp f _t (a) is i	maps. A bome nee, a homoti dependent of - (constant)	opy elective to A te [0,1] for all	("continuous is a map f: [0, from fo to f; (-fo, a e.A	$f(t_{y,x}) = f_{y}(x)$ $f_{y}: X \longrightarrow Y$ is a	homotopy f: [0,]xX ->)

A homotopy equivalence from X to Y is a pair of maps X + Y
A homotopy equivalence from X to Y is a pair of maps X Y such that fog: X >> X and gof: Y >> Y are homotopic to idx and idy respectively.
Eg. \mathbb{R}^n is homotopy equivalent to $\mathbb{R}^o = \{\cdot\}$ (or $\mathbb{R}^n \simeq \{\cdot\}$)
$\mathbb{R}^{n} \bigoplus_{g \in \mathcal{G}} \{o\} \qquad f(x) = o for all x \in \mathbb{R}^{n}$ $g(o) = o \in \mathbb{R}^{n}$
$g \circ f : \mathcal{R}' \longrightarrow \mathcal{R}'' \qquad \qquad f \circ g : \{o\} \longrightarrow \{o\}$
A homotopy from gof: $\mathbb{R}^n \to \mathbb{R}^n$ to id: $\mathbb{R}^n \to \mathbb{R}^n$ is $h(x) = tx$ $0 \le t \le 1$ $x \in \mathbb{R}^n$
Not relative to any subspace necessarily.
The same argument works for any def. retraction (doesn't even have to be a strong def. retraction)
S' is not homotopic; not contractible)
If $f: X \longrightarrow Y$ where both X, Y are path-connected then f induces a homomorphism $f_{\pm}: \pi, (X) \longrightarrow \pi, (Y)$
$\alpha: [0,1] \longrightarrow X \text{gives} f_{\alpha} = f \circ \alpha: [0,1] \longrightarrow Y (g \circ f)_{\mu} = g_{\mu} \circ f_{\mu}$
If $X \simeq Y$ then $\pi_r(X) \simeq \pi_r(Y)$

from $\chi = \chi^0 \cup \chi' \cup \chi^2 \lor \chi$	D' D' D' S' D' D' D' D' S' J' of D' with the boundaries of	De attached to X ⁿ⁻¹ via attachi.	g maps:
Eq. Torus $T^2 = S' \times S' =$			
χ [°] = χ [′] = χ [′]	• = D° • $S' \vee S'$	· ·	
$\mathfrak{T}_{\mathfrak{r}}(\mathfrak{T}^{2}) \cong \mathbb{Z}^{2} = \mathbb{Z} \times \mathbb{Z}$	D' n D'		
	· · · · · · · · · · · · · · · · · · ·		· ·

Möbius skrip to cylinder S' Glinder: X° = x [0,1] **ปั**นปร orientable not orientable Both are homotopy equivalent to S' Both have Z & fund. gp. (def. refroct 65') P²R (or RP²) is the real projective plane is with opposite boundary points identified obtained from a disk D D' glued to a Mobius

is not homotopic to the null path r. a is homotopic to 8 π (PR) $\cong \mathbb{Z}_{2\mathbb{Z}}$ (Tu $f_{i}((x,y)) = \begin{pmatrix} x \\ \sqrt{y}x + y^{2} \end{pmatrix}$ R-103 -A homotopy equivalence R-903 F: S' 1 Killing $f_{t}(v) = (v-t)v + t \frac{v}{|v|}$ $f_{i}(v) = \frac{v}{|v|}$ strong def. retraction since $f_t|_{s'} = id_{s'}$ for all $t \in [0,1]$ f. R-803 → R-803 $f_0 = id_{R^2} \cdot s_0 g$ f_r is a retraction to S {d: n=2} free group on one generator $\langle x \rangle = \pi(\widehat{R} - \widehat{s} \circ \widehat{z}) \cong \mathbb{Z}$

$\pi_r(S') \cong \mathbb{Z}$ Given a closed peth in S' with be	se point le S'= Sz	∈ () : ≤ = '}	· · · · · · ·
define $w(z) = \frac{1}{2\pi i}\int \frac{dz}{z} = \frac{1}{2\pi i}$	se point le S' = $\begin{cases} z \\ \int_{B(0)}^{B(1)} \frac{dz}{z} \end{cases}$	₿* [0,1]	
$\bigcup_{w(\alpha)=1}^{n}$	F	$\mathbf{g}(\mathbf{o}) = \mathbf{g}(\mathbf{e}^{\pi i\theta}) = \mathbf{g}(\mathbf{e}^{$	
$\bigvee W(\alpha) = 1$ $W(\alpha^{*}) = n$	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	
W is an isomorphism from	π,(S') + Ζ.	$\int \frac{dz}{z} = \ln z ^+$	2mi Queq Z
In C- EO 3 the same argum	ent works	· · · · · · · · · · · · · · · · · · ·	
$\mathbb{R}^{2} - \{0\} \qquad O = (0,0) \qquad \qquad$	$\chi = \mathbf{K} - \mathbf{Z} $ $\pi_{\mathbf{r}}(\mathbf{X}) = \{\mathbf{x}^{i_0} \mathbf{x}^{j_0} \mathbf{x}^{i_1}\}$	A. A. A. A. A. A. A. A. A. A.	B
k-punctaved place R-SA1,, Ak }	β ^{1°} α [']	lle skok	al
$\pi_{1}(X) = f_{k} = Free(\{x_{1}, \dots, x_{k}\})$	π, (X) is the two a	$f_{i} = a^{i} e^{j e^{i} a^{i}}$; $i, j \in \mathbb{Z} - 503$ $e^{\frac{1}{2}}$ $e^{\frac{1}{$	Bog a
$\chi \simeq s' v s' v \cdots v s'$		$\frac{\partial e}{\partial x} \left(\left\{ \mathbf{x}, \mathbf{\beta} \right\} \right) = \left\{ \mathbf{x}, \mathbf{\beta} \right\}$	• 70

The Van Kampen Theorem gives a presentation for TT, (X) when X is suitable described in terms of smaller pieces. A presentation for a group G expresses G as a homomorphic image of a free group F i.e. $G \cong F/N$, $N \triangleleft F$. Let X be a set of generators of G $(X \subseteq G, \langle X \rangle = G)$. Free $(X) \longrightarrow G$ is a surjective homomorphism; N is its hernel. $G = \langle x_{i_1}, ..., x_k : \overline{r_{i_1}, ..., r_m} \rangle$ is a presentation for G if $X = \{x_{i_1}, ..., x_k\}$ is a set of k symbols, F = Free(X) (the free group on X1,..., Xk). Let N be the smallest normal subgo of F containing ri, rm the normal closure of $\langle r_i, ..., r_m \rangle \leq F$ i.e. the subgp. of F generated by $r_{i_1} \cdots r_m$ and their conjugates in F $N = \langle hr_i h' : i = r_i \cdots n; h \in F \rangle$ (When there are k generators and n relators, we say 6 is finitely presented.) $D_{10} \stackrel{\sim}{=} \langle a, b : a^2, b^2, (ab)^s \rangle \stackrel{\sim}{=} \langle x, y : x^2, y^5, xyx^3y \rangle$ eg, the dihedral group of orders 10 xyxy = i xyxy = i xyx = y' xyx = y'

$D_{10} \stackrel{\sim}{=} \langle a, b : a, b \rangle$	$b^{2}, (ab)^{3} \geq \langle x, y : x^{2}, y^{5}, y \rangle$	$xyxy$ $x^2 = a^2 = 1$		
	$\overrightarrow{\phi}$ $x=a$ y=ab	y ^s = (ab) ^s = 1 xyx ['] = a·ab·a ['] = ba whereas y ['] = (ab)	\dot{a}	
· · · · · · · · · · · · ·	heck .	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · ·	· · · · · · · · ·
A free product l between elements	6*H is the set of all in 6 and elements in	words from elements in H (except & one of	6 and H having these elements is	no relations the identify)
Z*Z= <a> * = infinite infinite cyclic cyclic	$\operatorname{Free} \left\{ \begin{array}{l} a, b \end{array} \right\} = \left\langle a, b \right\rangle$	$= \frac{1}{a^{2}b^{2}a^{2}b^{2}\cdots a^{k}b^{k}},$	···· 3	· · · · · · · ·
$\langle a : a^2 \rangle * \langle b \rangle$	$ a_{2}\rangle = \{1, a, b, ab, ba, ba, ba, ba, ba, ba, ba, $	aba, bab, abab, baba, aba	$ba, babab, \dots, 3 = 1$	
$\cong (\mathbb{Z}_{2\mathbb{Z}}) * (\mathbb{Z}_{2\mathbb{Z}})$		$xyx^{2} = y^{2} > = grandxyx^{2}y = i$		
<y: 5=""> =</y:>	$\langle x_1,, x_m : r_1,, r_k \rangle$ $\langle y_1,, y_n : s_1,, s_l \rangle$		· · · · · · · · · · · · ·	· · · · · · · ·
<pre>x: R> * <'</pre>	$Y:S > = \langle XvY: Rv$	$S > = \langle \pi_1, \dots, \pi_m, y_1, \dots \rangle$	$y_{m} : r_{i_{1}} \cdots r_{k_{1}} s_{i_{1}} \cdots s_{k}$,≻

add more relations involving xi's and yi's e.g. Free products with amalgamation (a: a²) * (b: b²) cyclic of (ab) cyclic of order 2 order 2 $D_{r_0} = \langle a, b : a^2, b^2, (d_0)^5 \rangle$ Dos / Normal closure of ((ab))) Let X be a path-connected top. space covered by two open sets U, V. Since X is connected, $U \cap V \neq \emptyset$. Pick $\pi_0 \in U \cap V$. We also assume $U \cap V$ is path-connected. Ai J i, j inclusion araps Jas Shown (injective, continuous) X: U Y Theorem (Van Kampen, special case) LOV This induces group homomo-phisus ix i jx as $\pi_{r}(X) = \pi_{r}(U) \star \pi_{r}(V)$ (v, v) = (v, (u, v)) (v, (u, v)) (v, (u, v))where the amalgamation over TT, (UnV) is given by; $\pi(\mathcal{U})$ for all $\alpha \in \pi(U \cap V)$, identify i (a) with jy (a) ie shown. (UNV) if (a) jf (d) is a new relator.

Eq. $\chi = S^2$ $\pi'(\mathcal{C}_{r}) = \pi'(\mathcal{D}) * \pi'(\mathcal{D}_{r})$ $\mathbf{\lambda}$ \mathbf{O} $\sim D$ T. (D) * T. (D') = 1. amelgamation $\pi_{r}(D) \cong \pi_{r}(D') = 1$ $\pi_{r}(D \cap D') = \langle \alpha \rangle$ trivial A.D ¶7(₽́) T, (DOD) one-to-one 1 (X. $\mathbf{b}_{\alpha}(\alpha) =$

 \bigcirc T² = $\pi_i(u) \star \pi_i(v)$ = 1 * (a, b) Unv S. × (-22 $= \langle a, b \rangle$ $\pi_{\mathcal{L}}(\mathcal{U}\cap \mathcal{V}) = \langle \langle \rangle$ Then identify a with 1 due to the inclusion UNVCU. In Then identify cardodi xo c' with a motopic to ca, a, a, a, a, c So duction ab with ba. $TT_1(T^2) = \langle q, b \rangle / [d_0 = b_q]'$ ~ Z×Z α₀α, with α, α₀ = <a, b>/Normal closure of = the abelian zation of <a, b>

	eth connected top	also follows from Van spaces then T. (XVY)	Kampen's Theorem = $\pi_1(X) + \pi_1(Y)$.
			$\mathcal{U}\simeq\mathcal{V}\simeq \mathbf{S}'$
	· · · · · · · · · · · ·	×.	· · · · · · · · · · · · · · · · · · ·
π, (S, V S,) = π	π,(U) * π,(V)	$\mathbf{u}_{\mathbf{r}} = \mathbf{u}_{\mathbf{r}} + $	roup on two generators.
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		
In Tp, the category product is X×Y.	- of top. spaces,	the coproduct of X and Y is	s X LI Y = hisjoint union;
P. P. F.	· · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·
$\begin{array}{c} \begin{array}{c} P_{1} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $			

ie pairs (X, x), x EX, X nonempty top. space disjoint union XLIY with x, yo identified The category of pointed top. spaces The coproduct (X, x) 11 (Y, y) = denoted as (X, x_o) v (Y, y_o) = (X i Y, x=y_o) a (rontinuous) map X -> Y satisfying xo -> yo A anorphism (X, xo) -> (Y, yo) - 9 Grp = Igroups} We have a functor & pointed top. spaces } (X, x) $(X, x_{\circ}) \xrightarrow{\uparrow} (Y, y_{\circ}) \xrightarrow{q} (Z, z_{\circ})$ $(\chi, x_o) \vee (Y, y_o)$ $\pi_{r}(X, x_{o}) \xrightarrow{f_{*}} \pi_{r}(Y, y_{o}) \xrightarrow{g_{*}} \pi_{r}(Z, z_{o})$ $F((X, x_0) \vee (Y, y_0)) = F((X, x_0)) * F((Y, y_0))$ $(g_{o}f)_{t} = g_{t} \circ f_{t}$ coproduct in Grp coproduct in pointed top. Spaces is wedge sim. is just free product

Proj. plane P²R $T_{i}(P^{2}R) = \langle \kappa : \kappa^{2} \rangle = \langle \alpha \rangle / \langle \alpha^{2} \rangle = group of order 2$ $= \mathbb{Z}/2\mathbb{Z}$ $^{\prime} \alpha$ Klein Bottle K where N is the subgy of <a, p> generated by spaip and its conjugates $\pi_r(K) = \langle \alpha, \beta : \alpha \beta \alpha' \beta \rangle = \langle \gamma, \beta \rangle / N$ A A A Force < Brig = 1 in the quotient gp. So T((K) = ZXZ k,l∈Z $\alpha \beta^{3} \overline{\alpha}^{'} = \alpha \beta \beta \beta \overline{\alpha}^{'} = (\alpha \beta \overline{\alpha}^{'})(\alpha \beta \overline{\alpha}^{'})(\alpha \beta \overline{\alpha}^{'}) = \beta^{'} \beta^{'} \beta^{'} = \beta^{3}$ so $\alpha \beta^{2} = \beta^{3} \alpha$ abd = B

 $\{\alpha, \beta\}$: $k, l \in \mathbb{Z}$ = $\pi, (K) = \mathbb{Z} \times \mathbb{Z}$ The elements with K even form an abelian subgp $\langle \alpha^2, \beta \rangle \cong \mathbb{Z} \times \mathbb{Z}$ and the quotient $\pi_1(K) / \langle \alpha^2, \beta \rangle$ is order 2. (free abolion of rank 2) leading up to trefoil : $T^2 \longrightarrow \mathbb{R}^3 S^2$ This surface partitions R° juto two solid tori we have an (m, n) forms knot embedded in the for any m, n>1 relatively prime, Take the line $y = \frac{m}{m} x$ T= R2/72 The trefoil is the (3,2) torus knot. (0,0)

X $\pi_{I}(\mathbb{R}^{3} - K) = \langle \alpha, \beta, \gamma : \alpha\beta = \beta\gamma = \gamma\alpha \rangle = \langle \alpha, \beta : \alpha\beta\alpha = \beta\alpha\beta \rangle$ Prove using Van Kampen's Theorem $\gamma = \beta' \alpha \beta = \alpha \beta \alpha'$

S3~ K = U U V V = (U U open solid de glumt (S×D²)° trefoil knot U, V open path-connected open solid dought $(S' \times D^2)$ UNV ··· V open ubbl of torus $\mathfrak{A}_{\mathcal{A}}(\mathcal{U}) = \langle \mathfrak{E} \rangle \cong \mathbb{Z}$ $\pi_{1}(V) = \langle s \rangle \stackrel{\sim}{=} \mathbb{Z}$ (interior) (exterior) S-K = open solid opter Solid doughut $\varepsilon^2 = \gamma = S^3$ open torus - K γ · Unv T.(UNV)= <Y) =7 = < x, p : apx = pxp> ~ IF X C R", when can T, (X) have forsion (nontrivial elements of finite order)? Eq. P'R C→ R⁴, T, (P²R) ≅ Z/22 5 = xpx, 5 = x => S= reabar = E For n=2, no torsion in T. (X). for n=3, conjecturally T. (X) has no

Where do bores hasts arise 'in values'? The (m, n)-torus hast for m, n > 2 al pince. A busit is an embedding of S' in S ³ (r in R ³). The unit sphere prime C' is $\overline{f}(z,w) \in \mathbb{C}^{2}$: $ z ^{2} + w ^{2} = 1$? \cong S ³ Consider the harring if $(z,w) \in \mathbb{C}^{2}$: $ z ^{2} + w ^{2} = 1$? \cong S ³ Recall : S ³ can be constructed by pasting together two solid tori S' N ³ (second torus harring if would an and long the reversed as happens (second torus harring if would an and long the reversed? (in boundary pints on first torus are pitch to the interval glue together writtend this reversed? (in boundary pints on first torus are pitch to the interval glue together two solid fori along their boundaries ! Not if we instead glue together two solid fori along their boundaries ! to first there are many wrange to flue together two solid fori along their boundaries ! Consider any homeomorphism of T antidion [1 o] [1] [2] A preserves 2 ^k C R ^k so A acts on R' = 2 ^k T ^k . A maps the 'ind' pitces in ry directions to contain their gives a loss space. Even this construction graevalies guite tor.	where do forme linots arise "in nature"?	
A kest is an embedding of S' in S' (π in R ²). The mail sphere in C' is $\tilde{f}(z,w) \in \mathbb{C}^2$: $[2l^2 + w ^2 = 1\tilde{f} \cong S^3$ Consider the variety $\tilde{f}(z,w) \in \mathbb{C}^2$: $[2l^2 + w ^2 = 1\tilde{f} \cong S^3$ Consider the variety $\tilde{f}(z,w) \in \mathbb{C}^2$: $[2l^2 + w ^2 = 1\tilde{f} \cong S^3$ Recall : S ³ can be constructed by pasting together two solid toris $S' \times D^2$ (second torus having it monition and longitude "reversed" as happens (second torus having it monition and longitude "reversed" as happens (second torus having it inside or \tilde{t}) Next if we instead glue together without this reversed? (i.e. boundary points on first torus are path to the identical point on the second torus)? $S' \times S^3$ The fact there are many ways to glue together two solid fori along their boundaries! Consider any homeomorphism of T \tilde{t} Apply any $A \in SL_2(2) = \tilde{f}[\frac{n}{2}\frac{1}{2}]$: $a_ib_ic_id \in Z$, $ad-bc = \pm 1\tilde{f}$. to \mathbb{R}^2 $A = \begin{bmatrix} n & b \\ c & c \end{bmatrix} \in S_2(2) \Rightarrow \tilde{A} = \pm \begin{bmatrix} d & -1 \\ c & c \end{bmatrix}$	The (m, n) - torus knot for m, n > 2 rel. prime.	
The unit sphere in C is $f(z,w) \in C$: $[z]^{z} + w = 1$ = S Consider the variety $f(z,w) \in C$: $z^{z} = w^{2}$ intersected with S^{3} is the (a, v) -torus knot. Recall : S^{3} can be constructed by pasting together two solid tori $S' \times D^{2}$ (second torus having its meridia and brightude "reversed" as happens (second torus due together without 7k is revocad? (i.e. boundary pints on first torus dre path to the interve instead glue together without 7k is revocad? (i.e. boundary pints on first torus dre path to the identical pint on the second torus)? $S' \times S^{2}$ $T_{0}(S' \times S') \notin Z$ the fact there are many ways to glue together two solid for along their boundaries! Consider any homeomorphism of T^{2} T_{0} $f(z)^{2}$ f(z)	A knot is an embedding of S' in S' (or in R?).	
Recall : S ³ can be construited by pasting together two solid ptr st (second torus having it movidian and brightude "reversed" as happens when turning it "inside ort") What if we instead glue together without This reversed? (i.e. boundary points on first torus are posted to the identical point on the second torus)? S'X S ² $\pi_1(S'X S^2) \notin \mathbb{Z}$ In fact there are many ways to glue together two solid tori along their boundaries! Consider any homeomorphism of T ² if if if gives S'X S ² $\pi_2(S'X S^2) \notin \mathbb{Z}$ Apply any. $A \in SL_2(\mathbb{Z}) = S[a 1]$: $a_1b_1c_1d \in \mathbb{Z}$, $ad-bc = \pm 1$. to \mathbb{R}^2 $A = [a 1] \in SL_2(\mathbb{Z}) \Rightarrow \tilde{A} = \pm [t a]$	The mit sphere in C is $f(z, w) \in C^{-1}$: $ z ^{-1} + w = 1$ = 5 destroy: $z = -1$ destroy: $z = -1$ and $z = -1$ and $z = -1$ by z	· · · · · ·
in fact there are many ways to give together two solid tori along their boundaries! Consider any homeomorphism of T^2 $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0$	Recall: 5° can be constructed by pasting together two solid tori S'* D'	
in fact there are many ways to give together two solid bri along their boundaries! Consider any homeomorphism of T^2 $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 $	when turning it "inside out")	
in fact there are many ways to give together two solid bri along their boundaries! Consider any homeomorphism of T^2 $\begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix}$ $\begin{bmatrix} 0 & 1 \\ 0 $	What it we instead give to getween written)? S'X S ² (10. (S'X S ²) \cong Z	
$Apply any A \in SL_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = \pm 1 \right\} = to \mathbb{R}^2 \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) \Rightarrow \tilde{A}^{\perp} = \pm \begin{bmatrix} d & -1 \\ c & d \end{bmatrix}$	In fact there are many ways to glue together two solid tori along their boundaries!	
$Apply any A \in SL_2(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = \pm 1 \right\} = to \mathbb{R}^2 \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_2(\mathbb{Z}) \Rightarrow \tilde{A}^{\perp} = \pm \begin{bmatrix} d & -b \\ c & d \end{bmatrix}$	Consider any homeomorphism of T ² reflection (i ']	
	gives S'×S ² gives S ³ .	· · · · · ·
A preserves Z ² C R ² so A acts on R ² /Ze = T ² . A maps the "mit" paths in r,y directions to certain torus knobs. But the real thing is what happens to the A maps the "mit" paths in r,y directions to certain torus knobs. But the real thing is what happens to the construction above (gluing together two solid tori). This gives a lens space. Even this construction generalizes quite ter.		
A maps the "mit" paths in ry directions to certain torms knots. But the real thing is what happens to the Enstruction above (gluing together two solid bri). This gives a lens space. Even this construction generalizes quite far.	A preserves $Z^2 \subset R^2$ so A acts on $R^2/Z^2 \cong T^2$.	$et A = \pm r$
A deeps the must fuill the two solid bri). This gives a lens space. Even this construction generalizes quite far.	10 ""it" artes in my directions to certain torus knots But the real thing is what happens to	the first
guile ter.	A deeps the unit provis (gluing together two solid bri). This gives a lens space. Even this construction	generalises
	guile Tear.	· · · · ·

Steert with a knot Kin 53 This leads to Dehn surgery : E- which of K has boundary R= T² embedded strangely in S³. B $(S^3 - R)$ glued to $(S^3 - R')$ along their boundaries $R \cong R' \cong T^2$. Ŕ $G = \langle x, y : xy^2 \overline{x'y}, xy^4 x \rangle$ GO with two closed disks a glued on to the 1-skeleton S'VS' Construct X having Tr, (X) ≅ Covering Spaces Let $f: Y \rightarrow X$ be a map. The fibre over $x \in X$ is $f'(x) = \{y \in Y : f(y) = x\}$. Given $A \leq X$, its preimage is $f'(A) = \{y \in Y : f(y) \in A\}$. (Hatchen instead writes f'[A].) The map $f: Y \rightarrow X$ is a covering map if every point $x \in X$ has an open noble U such that f'(U) is disjoint union of open sets in Y, each of which is mapped homeomorphically to U by f. In particular, this country f(x) CY is a discrete subset. $(\chi_{q},\chi_{3},\chi_{2},\chi_{2},\chi_{1})$ $f(x) = \{x_r, x_2, x_3, x_4\}$

Eg. $f: \mathbb{R} \rightarrow \mathbb{R}$ $x \rightarrow \int_{0}^{\infty} x^{\sin \frac{1}{2}}, x^{\pm 0};$ f is not a concering scap	$f'(0) = \left\{ 0, \frac{1}{\pi}, \frac{1}{2\pi}, \frac{1}{2\pi}, \frac{1}{3\pi}, \cdots \right\}$
If $f: Y \rightarrow X$ is a conversing map then f is locally a open about V of y such that $f _V : V \rightarrow f(V)$ is a horneon	$X_{i} = X_{i} = X_{i$
But the converse is not true: not every locally injective/how	meanorghic map is a covering map.
Eq. Covers of S': There are many covering maps of S with these. Think $S' = \{ z \in \mathbb{C} : z = 1 \}$ for every NNA-ZENO covering map. Eq. $p_z : S' \longrightarrow S'$, $z \longmapsto z^2$ All tibres ha this is a z. (double cover	$\operatorname{muger}_{n}, T_{n}(z) = z, T_{n}: S \longrightarrow S (s a)$

E: R -> S', t +> e''' is a cover of intinite degree (00.to-1) If f: Y -> X and g: Z -> Y are covering maps than fog: Z -> X is also 6

· · · · · · · · · · · · · · · · · · ·						• • •
	5115 =	S' × {0,1}				
	trivial double					
	cover					
	trivial double cover (disconnected)					
	· ∠r · · · · ·					
	· C · · · · · · · · · ·					
	2	· · · · · · · ·	· · · · · · · · ·			· · · ·
		· · · · · · · · ·	· · · · · · · · ·	· · · · · · · · · ·		· · · ·
A concrime man Y - X is sometim	ues described as	"Y is a cove	er of X". But	really it's	$Y \xrightarrow{P} \chi$ the	t we
A covering map Y - X is sometime more than the cover	ues described as	"Y is a cove	er of X". But	really it's	Y <u></u> ₽⇒X th	it we
A covering map Y - X is sometime mean to be the cover.	es described as	"Y is a cove	er of X". But	really it's	Y <u></u> ₽⇒X th	it we
A covering map Y - X is sometime mean to be the cover.	es described as	"Y is a cove	er of X". But	really it's	$Y \xrightarrow{P} \chi$ the	it we
A concring map Y - X is sometime mean to be the cover.	ues described as	"Y is a cove	r of X"- But	really it's	Y <u></u> →X th	t we
A covering map $Y \xrightarrow{P} X$ is sometime mean to be the cover.	es described as	"Y is a cove	er of X". But	really it's	Y <u></u> ⇒X th	it we
A covering map $Y \xrightarrow{r} X$ is sometime mean to be the cover.	es described as	"Y is a cove	er of X". But	really it's	$Y \xrightarrow{P} \chi$ the	it we
A covering map Y - X is sometime mean to be the cover.	es described as	"Y is a cove	en of X". But	really it's	$Y \xrightarrow{P} \chi$ th	it we
A covering map Y - + > X is sometime mean to be the cover.	es described as	" Y is a cove	n of X"- But	really it's	Y <mark>_P</mark> ⇒X th	it we
A covering map $Y \xrightarrow{r} X$ is sometime mean to be the cover.	es described as	"Y is a cove	er of X - But	really it's	Υ <u></u> »χ th	it we

The map $P: C \rightarrow C$, $z \rightarrow z''$ branched cover	is not quite a covering	g map for n>1;	instead it	'''''
branched covers for $z_0 \in \mathbb{C}$, $z_0 \neq 0$, \mathcal{Y}_{u} covers	nbhds of zo (n-fo	ll cover)	· · · · · · ·	· · · · · · · · · ·
	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · ·
		i et al a construction of the second se	· · · · · · · ·	· · · · · · · · · ·
			· · · · · · · ·	· · · · · · · · · · · ·
$l_{\mu}(z_0) = \{W_0, w_1, w_2, \dots, w_m\}$ l_{μ} is a conversing map $C - \{0\}$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · ·	· · · · · · · · · ·
$\stackrel{(n)}{=} S' \times R$ $\stackrel{(n)}{=} S' \times (0,1)$		a.fold cover)	· · · · · · ·	
		$f(x,y) \in C[x,y]$ of d	egreen er	projectively,
More goverelly an algebraic curve of du sero set of a homo geneons poly of Rieman sphere (US03) = P($\begin{array}{l} \text{algree } & \text{tr}, y, z \\ z $	$f(x,y) \in C[x,y]$ of d [x,y,z] defines (Rieman surface	en a roug (ouce of the

Eq. the curve $y - x^2 = 0$ has Riemann surface $\{(x, y) \in C^2: y = x^2\}$ is topologically $\cong S^2$ after compectification. $(x, x^2) \longrightarrow x^2$ is 2-to-1. Branched course with branch points $0 = C \cup S_{00}^2$ Branched course with branch points 0,00 € CUE003. (m) -2: +-1 (m) It defines a domble cover (x,y) is x This is branched at 0,1,2,00. Eq. $y^2 = x(x-1)(x-2)$ is an elliptic curve The Riemann sufface of this curve େଡେ 2.20 Wo $p^{-1}(z_0) = \{w_0, w_1\}$ CUSOO3

When are two covering maps of equivalant ? Say $Y \xrightarrow{r} X$, $Y' \xrightarrow{r} X$ covering maps Greph i.e. combinatorial graph with vartices \$1,2,3,43 and edges \$\$1,23, \$1,33, ---, \$3,43} eg. X = X is the geometric realization of this graph tormed as disjoint union of copies of [0,1] with endpoints identified as required by the picture.