Math 5605 Algebraic Topology

Book 1

If X, Y are top, spaces, $f: X \rightarrow Y$ is continuous if $f'(u) \leq X$ is open whenever $U \subseteq Y$ is open. $f: X \rightarrow Y$ is a homeomorphism if f is bijertice and f, f' are continous. X = Y are homeomorphic if there exists a homeomorphism X => Y. Since $S^2 \leq \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z) \in \mathbb{R}^3 \times \mathbb{Z}^2 + y^2 + 2^2 = 1\} = \{(x,y,z)$ R' # S' S' # T' = S' × S' = S' T' are compact surfaces. They are locally homeomorphic but not globally homeomorphic. $T' = S' = () = circle = \{z \in \mathbb{C} | |z| = 1\}$ (sig) S° # T² because S² is simply connected whereas T² is not. In S¹, every closed path can be contininuously shownk" to a point (homotopic to a point, i.e. mull homotopic) Eq. For every N>0, R" is homotopy equivalent to R° = {.}

a function f: [0,1] -> X such that f(0)=a, f(1)=b. biven points a, b & X (a topological space), a path from a to b All maps (unless indicated otherwise) are assumed to be continuous. [0,1] \xrightarrow{f} f(0)=a f(1)=b X f(2)=b X f(2)=b XIf X has a pith between any two of its points, then X is pith-connected, for the time being, we'll assume X is path connected. (In general, we instead define the fundamental grouppid of X.) If $\varphi: [0,1] \rightarrow [0,1]$ (necall: continuous) such that $\Psi(0)=0$, $\Psi(1)=1$ then $\varphi: \varphi: [0,1] \longrightarrow X$ is just a reparameterization of the same path and we don't distinguish it from f. If f,g: [0,1] -> X are peths such that f(1): g(0) then we can concatenate them to form a new path from from to g(1): f(w) f(r) = g(w) g(r) h $f(r) = \begin{cases} f(r) \\ g(r) \\ g(r$ のともとえ えきもちい A map [0,1] -> X (fg) h is the same path as f(gh) after reparameterization: $((f_{g})h)(t) = \begin{cases} f(4t), t \in [0, \frac{1}{4}] \\ g(4t-1), t \in [\frac{1}{4}, \frac{1}{2}] \\ h(2t-1), t \in [\frac{1}{4}, \frac{1}{2}] \end{cases} \quad (f(gh))(t) = \begin{cases} f(2t), t \in [0, \frac{1}{2}] \\ g(4t-2), t \in [\frac{1}{4}, \frac{1}{2}] \\ h(2t-3), t \in [\frac{1}{4}, \frac{1}{2}] \end{cases}$ $(s,t) \mapsto f(s,t) = f_s(t)$ t∈ (0, 2] such that f=f is. fit)=fits f=g is. fit)=gds $f_{s}(t) = a \qquad \text{for all} \\ f_{s}(t) = b \qquad s \in [0, T]$ fig are homotopic but h is not homotopic to fig f_{i} This is a homotopy from f to g We say f, g are homotopic if there is a continues. Family of paths from a to b in X, f_s ($s \in [0, 1]$) with $f_s = f$, $f_s = g$

If P: [0,1] ~> [0,1] is a map with P(0)=0, P(1)=1 homotopic to f. A homotopy from f to fog	then the	reparameterized	path	foq: [0, 1]	→X	3
	15					
[0,1] ² - 7 ×						
$(s_{i}t) \mapsto f((i-s)t + s(t+s)) = f_{s}$	#) · · · · · · ·					
$f_{0}(t) = f_{1}(t)$						
$f_{1}(4) = f(9(+1))$						
$f_{2}(0) = f((1-s) + s + f(0)) = f$					• • • •	
$f_{s}(1) = f((1-s) \cdot 1 + s \cdot g(1)) = -$	fa)			· · · · · ·		
Fix x E X. Assume X is path connected. IT,	(X, x) is -	the group of a	ll home	stopy classe	s of pic	this
Fix x E X. Assume X is path connected. IT, from xo to xo in X under concatenation. It turns a	mt. m, (X, xo	$) \cong \pi_{c}(X, x)$) for a	ll x₀, x, €	$\boldsymbol{\chi}_{i}$, ,	
This gives the fundamental group T. (X).	r tdeatid	n in the (X, Xn)				
T, (TR") = 1 (toivial group).		y in m (X, Xo)	а а А Г (t) = Xo for	telai	
- (C') ~ 7/ (free arms on one generation)		$\sum_{x} x$	$\gamma f = f \gamma$	=f for	all fe m	(X, x ₀)
$\pi_i(S') \cong \mathbb{Z}$ (free group on one generation)	the inver	se of $f \in \pi_r(X)$	た) 这	 .)		
Frank Example X	* (t.	f(Ht) , the interval of the terms of terms	te lur perce di	rection)		
Fix g path in X from x to x,	F	$f\bar{f} = \bar{f}f =$	Y	a cath		
An somosphism of T(X, x) ->T(X, x)						
An zomosphism ϕ : $\pi_i(X, x_0) \longrightarrow \pi_i(X, x_1)$ $\varphi \longrightarrow \overline{g}fg \qquad \phi(4)$	$f(f) = \bar{a} f f$	$g = (\overline{g}f_{i}g)(\overline{g}f_{i}g)$	2.9)			
	€ π, (X, x₀)		- 11			
		• • • • • • •			• • • •	• • • • •

TT, (S ²) = 1 (trivial group : all closed	paths in S ² are will-homotopic)
$S^2 \cong \mathbb{R}^2 \cup \{\infty\}$ (one-point compactification)	
R ² Soe Hatcher	for general case including possibly space filling curves
$\pi_{i}(\mathbb{R}^{2}) = 1$	$\sum_{i=1}^{n}$
T, $(\mathbb{R}^2 - \{0\}) \cong \mathbb{Z}$ punctured plane follows from the fact that $\mathbb{R}^2 \cdot \{0\}$ and S' have the same homotopic	
follows from the fact that	· · · · · · · · · · · · · · · · · · ·
$\mathbb{R} \sim (x \cdot axis) \simeq \mathbb{R}^2 - \{o\} \simeq S'$	X ~ Y : X, Y are honotopic/ have the same honotopy type / are honotopy equitivalent
$\mathbb{R}^3 \sim \{o\} \simeq S^4$	Note: this is weaken than X = Y (howeo morphic).
· retraction "def. retraction weak sens	se Hatcher writes X 2 Y for homeonorphic
· deformation retraction S	Let $A \subseteq X$ (subspace of a top. space).
· strong deformation setraction	A retraction $f: X \rightarrow A$ is a map such that $f _{A} = id_{A} = 1$, i.e. $f(a) = a$ The for all a A .
 honotopy relative honotopy 	It cut a was pride the A is a privat of X
· homotopy equivalence	For \mathbb{R}^n has a retraction to any one of its points. If $a \in \mathbb{R}^n$ then the constant map $\mathbb{R}^n \longrightarrow \{a\}$, $x \mapsto a$ is a retraction.
· · · · · · · · · · · · · · · · · · ·	K - 7 - 3 - 20 - 6 - 7 - 1 -
	If $S' \subset \mathbb{R}^2$ is the unit circle, then there is no retraction $\mathbb{R}^2 \to S'$.
	(But this may not be obvious)

Α	leformatio	a RE	tractio	n in	, (a 1	no nio	TO PI	1 1	rom	· · · · ·	r. 7		notic	.1 .	AC	<u>^</u> .															
ie	leformation f: 1	lo 17 ·	×'X'		×χ			•				X	A																		
		. ال ^م رخيا م			• •		• •	• •		• •	• •	• •		• •	• •	• •		• •			• •			• •	•		•	• •		• •	•
		ftt',	() =	t Cx): 		0	1		• •				• •									•	• •	•	•	•			• •	
	۲ _o (x	() = X			j.	e	F, =	1d X																							
	f_i (i	x) e A				. :	f, .	is :	4 . R	etract	ie-	X	» A																		
	· · · f (a	a) = 4	for	· all	ae	A :		• •		• •	• •			• •		• •		• •	• •					• •				• •			•
TL JT	a def. re	frection	e en	ists	from	×Υ	-10	· A :	⊆ <i>X</i> ,	ve	sa.	1	A '	is a	de	formi	chion	i reta	act		of N	Î.		• •			•	• •		• •	•
.45	~							• •	. '			J · ·		• •		• •		• •	•		• •			• •	•		•	• •			
τ)	This is \$	fronge	n fta	m	etre	ect)																•			•	•				
			2.																		. 1.										
±9.	4: lo,	,, ,,] ,×,	R -	₹ R	-								<u>,</u> .								5										
			. 1.	1.5		÷		ж. п	dra	ction	to	30.	٤,٠-								. حب										
	4	(x) =	. (1-	T)X		12 4																									
	, , f _t ((x) =	· (1-	T)X		· · ·			0.1	,	1		e1'	• •	• •			·/·	•				٠	• •		٠		• •			•
fq xe	S' 7	(x) = is 4	ectrei	t of	י ג' ג	but	No	t. a.	def	. ret	ract	of	s'\	• •	• •	••••		(• •			0	•	•••	•	0	0	• •	•	o o	•
	S' x	°is 4 	retrei	t of	S ' -	but	Wo	t. a.	def	. re t	ract	of	s'.	• •	· ·	• •			• •			r N	•	••••	•	•	0	• •	•	• •	•
	S' x	°is 4 	retrei	t of	S ' -	but	Wo	t. a.	def	i ret	ract	of	s'.	· · ·	· ·	· · ·			• •			r N	•	· ·	•	•	•	· ·	•	• •	•
A stre	s' * mg def.	is 4 retra ct	setra	t of [0,1]?	S' X :	but	Wo	t. a.	def		ract	of	s'.	· · · · · · · · · · · · · · · · · · ·	· · ·	· · ·			• •)	N N	•	· · ·	•	•	•	· · ·	•	· · ·	•
A stre	$S' = \pi$ ong def. $f_0(\pi) = 1$	is 4 relva ct x	setred S: i.e. 1	it of [0, 1]? €= id	S' X - X	but	Wo	t. a.	def		ract		5'.	· · · · · · · · · · · · · · · · · · ·		ral						7 7	•	· · · · · · · · · · · · · · · · · · ·	•	•	•	· · ·		 	•
A stre	s' * mg def.	is 4 relva ct x	setred S: i.e. 1	it of [0, 1]? €= id	S' X - X	but	Wo	t. a.	def	. ref	ract		s'.	· · · · · · · · · · · · · · · · · · ·	def.	refr	ect .					N	•	· · · · · · · · · · · · · · · · · · ·	•	•	•	· · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	def	i ret	ract	of . 	s'. 	· · · · · · · · · · · · · · · · · · ·	def. but	ref. not	rect St	والم		lef.	ret	<i>M</i> mart		· · · · · · · · · · · · · · · · · · ·	•		•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ ong def. $f_0(\pi) = 1$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	def		ract	of .	s'. 	 . .<	def. but	ref not	rect St			ef.	ret	<i>M</i> Mact		· · · · · · · · · · · · · · · · · · ·	•		•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	def		ract		5	 . .	def.	ref not	ect st			ef.	ret	<i>N</i> ract		· · · · · · · · · · · · · · · · · · ·			· · ·	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	def		raet Llu X		5.	 . .<	def.	ref not	ect st	e de la composition de la comp	d	ef.) ret	<i>M</i> mart		· · · · · · · · · · · · · · · · · · ·	· · · ·		•	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	def		ract		S'.	 . .	def.	refr	ect st		d		ret	Nact		· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	def		ract LLL X		S'.	 . .<	def.	ref	ect st		d	lef.	ret	M nact						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	<i>det</i>		-rac1		S '.	 . .	1	rela	ract St		ð	∕ ′ef.	ret	<i>M</i> ract						· · · · · · · · · · · · · · · · · · ·		 . .	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	det		red Liu X		S '.	 . .	Lef.	refo	act st		d	ef.	ret	Nact						· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	
A stre	$S' = \pi$ $f_0(\pi) = \pi$ $f_1(\pi) = \pi$	is 4 Febraci X retrai	setres f: i.e. 1 tion	t of [0,1]7 5 = id X-5/	S' X - X	but 	жо Х	t. a.	det		red Lu. X		S'.	 	def.	refr	ract st		d	ef.	ret	R. C.								· · · · · · · · · · · · · · · · · · ·	

)(⊆ R ²	X= ([0,1] × 90	3 U U (Sr)	× [9,1-r])	K has a def.	ret to $A = \xi$) × [0,1]
· ·							
This is a def strong def. There is no	. rotract but rebact. strong def. re	rot a tract X-	Q≤ f≤ <u>1</u> A			≤t≤ı	
ret \$, \$; : X -	->Y he maps.	A bomotopy	from to to to i	s a map q: [$(t_{0,1}) \times X \longrightarrow Y$	Such that f	$(0, \pi) \approx f(\pi)$
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [m fs to fr (fs a e A	$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a		(0,7) = f(x) (1,x)= f(x) f:[0,1]×X →Y
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a	homotopy -	
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [m fs to fr (fs a e A	$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a	homotopy -	
Let $f_0, f_1 : X -$ If $A \subseteq X$ is such that	-> Y he maps. any subspace, f(a) is independence	A bomotopy a homotopy dat of $t \in (0, $ (ant)	from to to f, in elative to A fi 1] tor all	s a map f: [m fs to fr (fs a e A	$f_{tb,x} = f_{t}(x)$ $f_{t} : \chi \rightarrow \gamma^{t}$ is a	homotopy -	

A homotopy equivalence from X to Y is a pair of maps X + Y
A homotopy equivalence from X to Y is a pair of maps X Y such that fog: X > X and gof: Y > Y ere homotopic to id x and id y respectively.
E3. \mathbb{R}^n is homotopy equivalent to $\mathbb{R}^o = \{\cdot\}$ (or $\mathbb{R}^n \simeq \{\cdot\}$)
$\mathbb{R}^{n} \xrightarrow{f}_{g} \{o\} \qquad f(x) = o for all x \in \mathbb{R}^{n}$ $g(o) = o \in \mathbb{R}^{n}$
$g \circ f : \mathbb{R}^n \longrightarrow \mathbb{R}^n$ $f \circ g : \{o\} \longrightarrow \{o\}$
A komotopy from gof: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ to id: $\mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ is $h_{t}(x) = tx$, $0 \le t \le 1$, $x \in \mathbb{R}^{n}$
Not relative to any subspace necessarily.
The same argument works for any def. retraction (doesn't even have to be a strong def. retraction)
S' is not homotopic; not contractible)
If $f: X \longrightarrow Y$ where both X, Y are path-connected then f induces a homomorphism $f_{x}: \pi_{i}(X) \longrightarrow \pi_{i}(Y)$
$\alpha: [0,1] \longrightarrow X \text{gives} f_{\alpha} = f_{\alpha} \alpha: [0,1] \longrightarrow Y (g_{\alpha}f) = g_{\alpha} \circ f_{\alpha}$
If $X \simeq Y$ then $\pi_r(X) \simeq \pi_r(Y)$

from $\chi = \chi^0 \cup \chi' \cup \chi^2 \lor \chi$	D' D' D' S' D' D' D' D' S' d' D' with the boundaries of	Di attached to X ⁿ⁻¹ via attack	ing maps:
Eq. Torus $T^2 = S' \times S' =$		-	
χ [°] = χ [′] =	$\bullet = D^{\circ}$ $= S' \vee S'$	· · · · · · · · · · · · · · · · · · ·	
$\mathfrak{T}_{\mathfrak{r}}(\mathfrak{T}^{2}) \cong \mathbb{Z}^{2} = \mathbb{Z} \times \mathbb{Z}$	D' L D'		
	· ·		

Möbius skrip to cylinder S' Glinder: X° = x [0,1] **ปั**นปร orientable not orientable Both are homotopy equivalent to S' Both have Z & fund. gp. (def. refroct 65') P²R (or RP²) is the real projective plane is with opposite boundary points identified obtained from a disk D D' glued to a Mobius

is not homotopic to the null path r. a is homotopic to 8 π (PR) $\cong \mathbb{Z}_{2\mathbb{Z}}$ (Tu $f_{i}((x,y)) = \begin{pmatrix} x \\ \sqrt{y}x + y^{2} \end{pmatrix}$ R-103 -A homotopy equivalence R-903 F: S' 1 Killing $f_{t}(v) = (v-t)v + t \frac{v}{|v|}$ $f_{i}(v) = \frac{v}{|v|}$ strong def. retraction since $f_t|_{s'} = id_{s'}$ for all $t \in [0,1]$ f. R-803 → R-803 $f_0 = id_{R^2} \cdot s_0 g$ f_r is a retraction to S {d: n=2} free group on one generator $\langle x \rangle = \pi(\widehat{R} - \widehat{s} \circ \widehat{z}) \cong \mathbb{Z}$

$\pi_r(S') \cong \mathbb{Z}$ Given a closed peth in S' with be	se point le S'= Sz	∈ () : , = ' }	· · · · · · ·
define $w(z) = \frac{1}{2\pi i}\int \frac{dz}{z} = \frac{1}{2\pi i}$	se point le S' = $\begin{cases} z \\ \int_{z}^{\beta(1)} \frac{dz}{z} \\ z \end{cases}$	₿* [0,1]	
$\bigcup_{w(\alpha)=1}^{n}$	F	$\mathbf{g}(\mathbf{o}) = \mathbf{g}(\mathbf{e}^{\pi i\theta}) = \mathbf{g}(\mathbf{e}^{$	
$\bigvee W(\alpha) = 1$ $W(\alpha^{*}) = n$	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · ·	· · · · · · ·
W is an isomorphism from	π,(S') + Ζ.	$\int \frac{dz}{z} = \ln z ^+$	2mi Queq Z
In C- EO 3 the same argum	ent works	· · · · · · · · · · · · · · · · · · ·	
$\mathbb{R}^{2} - \{0\} \qquad O = (0,0) \qquad \qquad$	$\chi = \mathbf{K} - \mathbf{Z} $ $\pi_{\mathbf{r}}(\mathbf{X}) = \{\mathbf{x}^{i_0} \mathbf{x}^{j_0} \mathbf{x}^{i_1}\}$	A. A. A. A. A. A. A. A. A. A.	B
k-punctaved place R-SA1,, Ak }	β ^{1°} α [']	lle skok	aR
$\pi_{1}(X) = f_{k} = Free(\{x_{1}, \dots, x_{k}\})$	π, (X) is the two a	$f_{i} = a^{i} e^{j e^{i} a^{i}}$; $i, j \in \mathbb{Z} - 503$ $e^{\frac{1}{2}}$ $e^{\frac{1}{$	BQ
$\chi \simeq s' v s' v \cdots v s'$		$\frac{\partial e}{\partial x} \left(\left\{ \mathbf{x}, \mathbf{\beta} \right\} \right) = \left\{ \mathbf{x}, \mathbf{\beta} \right\}$	• X0

The Van Kampen Theorem gives a presentation for TT, (X) when X is suitable described in terms of smaller pieces. A presentation for a group G expresses G as a homomorphic image of a free group F i.e. $G \cong F/N$, $N \triangleleft F$. Let X be a set of generators of G $(X \subseteq G, \langle X \rangle = G)$. Free $(X) \longrightarrow G$ is a surjective homomorphism; N is its hernel. $G = \langle x_{i_1}, ..., x_k : \overline{r_{i_1}, ..., r_m} \rangle$ is a presentation for G if $X = \{x_{i_1}, ..., x_k\}$ is a set of k symbols, F = Free(X) (the free group on X1,..., Xk). Let N be the smallest normal subgo of F containing ri, rm the normal closure of $\langle r_i, ..., r_m \rangle \leq F$ i.e. the subgp. of F generated by $r_{i_1} \cdots r_m$ and their conjugates in F $N = \langle hr_i h' : i = r_i \cdots n; h \in F \rangle$ (When there are k generators and n relators, we say 6 is finitely presented.) $D_{10} \stackrel{\sim}{=} \langle a, b : a^2, b^2, (ab)^s \rangle \stackrel{\sim}{=} \langle x, y : x^2, y^5, xyx^3y \rangle$ eg, the dihedral group of orders 10 xyxy = i xyxy = i xyx = y' xyx = y'

$D_{10} \stackrel{\sim}{=} \langle a_1 b : a_1^2 \rangle$	$b^{2}, (ab)^{5} \geq \langle x, y : x^{2}, y^{5}, y^{5} \rangle$	$x_{y}\overline{x_{y}}$ $x_{z}^{2} = a_{z}^{2} = 1$		
	$\frac{1}{\phi} \qquad \begin{array}{c} x = a \\ y = a \end{array}$	b $y^{S} = (ab)^{S} = 1$ xyx' = $a \cdot ab \cdot a' =$ whereas $y' \ge (ab)^{S} = 1$	ba	
· · · · · · · · · · · · · ·	check	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · ·
A free product between elemen	6*H is the set of all to in 6 and elements ;	l words from elements H (except & one o	in G and H having f these elements is	no relations the identify)
Z*Z=(a) * infinite cyclic	$= \operatorname{Free} \left\{ 4, 6 \right\} = \left\langle 4, 6 \right\rangle$	=]a'b''a''b''a''b'''	5.e. \$	· · · · · · · · · ·
$\langle a : a^2 \rangle * \langle b \rangle$	$: _{2}^{2} \rangle = \{1, a, b, ab, ba\}$, ala, bab, abab, baba, a	$baba, babab, \dots = t$	
$\cong (\mathbb{Z}_{2\mathbb{Z}}) * ($		$x^{2}, xyx^{2} = y^{2} > = g^{2}$ $xyx^{2}y^{2} = i$	and all all all the period	
<y: 5=""> =</y:>	$\langle x_{i_1},, x_m \rangle = \langle y_{i_1},, y_n \rangle \langle s_{i_1},, s_k \rangle$		· · · · · · · · · · · · · · ·	· · · · · · · · ·
<x: r=""> * <</x:>	$Y:S > = \langle X v Y : R$	$v S \rangle = \langle \pi_1, \dots, \pi_m, y_1,$	$\neg g_n : r_1 \cdots r_k : s_1, \cdots, s_n$	

add more relations involving xi's and yi's e.g. Free products with amalgamation (a: a²) * (b: b²) cyclic of (ab) cyclic of order 2 order 2 $D_{r_0} = \langle a, b : a^2, b^2, (d_0)^5 \rangle$ Dos / Normal closure of ((ab))) Let X be a path-connected top. space covered by two open sets U, V. Since X is connected, $U \cap V \neq \emptyset$. Pick $\pi_0 \in U \cap V$. We also assume $U \cap V$ is path-connected. Ai J i, j inclusion araps Jas Shown (injective, continuous) X: U Y Theorem (Van Kampen, special case) LOV This induces group homomo-phisus ix i jx as $\pi_{r}(X) = \pi_{r}(U) \star \pi_{r}(V)$ (v, v) = (v, (u, v)) (v, (u, v)) (v, (u, v))where the amalgamation over TT, (UnV) is given by; $\pi(\mathcal{U})$ for all $\alpha \in \pi(U \cap V)$, identify i (a) with jy (a) ie shown. (UNV) if (a) jf (d) is a new relator.

Eq. $\chi = S^2$ $\pi'(\mathcal{C}_{r}) = \pi'(\mathcal{D}) * \pi'(\mathcal{D}_{r})$ $\mathbf{\lambda}$ \mathbf{O} $\sim D$ T. (D) * T. (D') = 1. amelgamation $\pi_{r}(D) \cong \pi_{r}(D') = 1$ $\pi_{r}(D \cap D') = \langle \alpha \rangle$ trivial A.D ¶7(₽́) T, (DOD) one-to-one 1 (X. $\mathbf{b}_{\alpha}(\alpha) =$

 \bigcirc T² = $\pi_i(u) \star \pi_i(v)$ = 1 * (a, b) Unv S. × (-22 $= \langle a, b \rangle$ $\pi_{\mathcal{L}}(\mathcal{U}\cap \mathcal{V}) = \langle \langle \rangle$ Then identify a with 1 due to the inclusion UNVCU. In Then identify cardod, No c' with a motopic to ca, a, a, a, a, c So duction ab with ba. $TT_1(T^2) = \langle q, b \rangle / [d_0 = b_q]'$ ~ Z×Z α₀α, with α, α₀ = <a, b>/Normal closure of = the abelian zation of <a, b>

	eth connected top	also follows from Van spaces then T. (XVY)	Kampen's Theorem = $\pi_1(X) \neq \pi_1(Y)$.	· · ·
		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	$\mathcal{U}\simeq\mathcal{V}\simeq S'$	· ·
	· · · · · · · · · · · ·	×		· ·
π, (S, ⊻ S, ) = π	$r_{r}(u) * r_{r}(v)$		proup on two generators.	• •
· · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			• •
In Tp, the category- product is X×Y.	· of top. spaces,	the coproduct of X and Y	is X 11 Y = hisjoint union;	• •
p 7Z R				
P. P. P.	· · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	• •
$\chi \xrightarrow{1} \chi_{1} \chi_{2} \chi_{3} \chi_{4} \chi_{5} \chi_{$				· · ·

ie pairs (X, x), x EX, X nonempty top. space disjoint union XLIY with x, yo identified The category of pointed top. spaces The coproduct (X, x) 11 (Y, y) = denoted as (X, x_o) v (Y, y_o) = (X i Y, x=y_o) a (rontinuous) map X -> Y satisfying xo -> yo A anorphism (X, xo) -> (Y, yo) - 9 Grp = Igroups} We have a functor & pointed top. spaces } (X, x)  $(X, x_{\circ}) \xrightarrow{\uparrow} (Y, y_{\circ}) \xrightarrow{q} (Z, z_{\circ})$  $(\chi, x_o) \vee (Y, y_o)$  $T_{r}(X, x_{o}) \xrightarrow{f_{*}} \pi_{r}(Y, y_{o}) \xrightarrow{g_{*}} \pi_{r}(Z, z_{o})$  $F((X, x_0) \vee (Y, y_0)) = F((X, x_0)) * F((Y, y_0))$  $(g_{o}f)_{t} = g_{t} \circ f_{t}$ coproduct in Grp coproduct in pointed top. Spaces is wedge sim. is just free product

Proj. plane P²R  $T_{i}(P^{2}R) = \langle \kappa : \kappa^{2} \rangle = \langle \alpha \rangle / \langle \alpha^{2} \rangle = group of order 2$  $= \mathbb{Z}/2\mathbb{Z}$  $^{\prime} \alpha$ Klein Bottle K where N is the subgy of <a, p> generated by spaip and its conjugates  $\pi_r(K) = \langle \alpha, \beta : \alpha \beta \alpha' \beta \rangle = \langle \gamma, \beta \rangle / N$ A A A Force < Brig = 1 in the quotient gp. So T((K) = ZXZ k,l∈Z  $\alpha \beta^{3} \overline{\alpha}^{'} = \alpha \beta \beta \beta \overline{\alpha}^{'} = (\alpha \beta \overline{\alpha}^{'})(\alpha \beta \overline{\alpha}^{'})(\alpha \beta \overline{\alpha}^{'}) = \beta^{'} \beta^{'} \beta^{'} = \beta^{3}$  so  $\alpha \beta^{2} = \beta^{3} \alpha$ abd = B

 $\{\alpha, \beta\}$ :  $k, l \in \mathbb{Z}$  =  $\pi, (K) = \mathbb{Z} \times \mathbb{Z}$ The elements with K even form an abelian subgp  $\langle \alpha^2, \beta \rangle \cong \mathbb{Z} \times \mathbb{Z}$ and the quotient  $\pi_1(K) / \langle \alpha^2, \beta \rangle$  is order 2. (free abolion of rank 2) leading up to trefoil :  $T^2 \longrightarrow \mathbb{R}^3 S^2$ This surface partitions R° juto two solid tori we have an (m, n) forms knot embedded in the for any m, n>1 relatively prime, Take the line  $y = \frac{m}{m} x$ T= R2/72 The trefoil is the (3,2) torus knot. (0,0)

X  $\pi_{I}(\mathbb{R}^{3} - K) = \langle \alpha, \beta, \gamma : \alpha\beta = \beta\gamma = \gamma\alpha \rangle = \langle \alpha, \beta : \alpha\beta\alpha = \beta\alpha\beta \rangle$ Prove using Van Kampen's Theorem  $\gamma = \beta' \alpha \beta = \alpha \beta \alpha'$ 

S3~ K = U U V V = ( U U open solid de glumt (S×D²)° trefoil knot U, V open path-connected open solid dought  $(S' \times D^2)$ UNV ··· V open ubbl of torus  $\mathfrak{A}_{\mathcal{A}}(\mathcal{U}) = \langle \mathfrak{E} \rangle \cong \mathbb{Z}$  $\pi_{1}(V) = \langle s \rangle \stackrel{\sim}{=} \mathbb{Z}$ (interior) (exterior) S-K = open solid opter Solid doughut  $\varepsilon^2 = \gamma = S^3$ open torus - K γ · Unv T.(UNV)= <Y) =7 = < x, p : apx = pxp> ~ IF X C R", when can T, (X) have forsion (nontrivial elements of finite order)? Eq. P'R C→ R⁴, T, (P²R) ≅ Z/22 5 = xpx, 5 = x => S= reabar = E For n=2, no torsion in T. (X). for n=3, conjecturally T. (X) has no

Where do torus knots arise "in nature"?	
where do forms knots arise "in nature"? The (m, n) - torus knot for m, n > 2 rel. prime.	
A knot is an embedding of S' in S' (or in R').	
The mait sphere in $(15)^{3}(2,w) \in \mathbb{C}^{2}$ $[2]^{2} +  w  = 1$ = 5 definite $(\alpha, w)$ -forms knot.	· · ·
Consider the variety { (2, w) \in C : 2 = w } hourselver and solid tori S' × D ² Recall: S ³ can be constructed by pasting together two solid tori S' × D ² (second torus having it noridian and longitude "reversed" as happens when turning it "inside out") What if we instead glue together without This reversed? (i.e. boundary points on first torus are posted to the identical point on the second torus)? S' × S ² Tr, (S' × S ² ) & Z	
when turning it "inside out") without This reversal? (is houndary points on first torus are posted	
What it we instead guilt to general torus)? S'X S ² T, (S'X S ² ) & Z	
In fact there are many ways to five together two solid for along their boundaries!	
In fact there are many ways to five together two solid bri along their boundaries! Consider any homeomorphism of T ² reflection [1's]	
gives S'xS ² gives S ³ .	· · ·
$Apply_{any} A \in SL_{2}(\mathbb{Z}) = \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{Z}, ad - bc = \pm 1 \right\} = b \mathbb{R}^{2} \qquad A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in SL_{2}(\mathbb{Z}) \Rightarrow \widetilde{A}^{2} = \pm 1$	
A preserves $Z^2 \subset R^2$ so A acts on $R^2/Z^2 \cong T^2$ . det A	= ± (
A preserves Z ² C R ² so A acts on R/Z ^e = T ² . A maps the "mill" pathes in x, y directions to certain torus knots. But the real thing is what happens to the Sonstruction above (gluing together two solid bri). This gives a lens space. Even this construction ges quite tar.	eralizas
quite far.	

Steert with a knot Kin 53 This leads to Dehn surgery : E- which of K has boundary R= T² embedded strangely in S³. B  $(S^3 - R)$  glued to  $(S^3 - R')$  along their boundaries  $R \cong R' \cong T^2$ . Ŕ  $G = \langle x, y : xy^2 \overline{x'y}, xy^4 x \rangle$ GO with two closed disks a glued on to the 1-skeleton S'VS' Construct X having Tr, (X) ≅ Covering Spaces Let  $f: Y \rightarrow X$  be a map. The fibre over  $x \in X$  is  $f'(x) = \{y \in Y : f(y) = x\}$ . Given  $A \leq X$ , its preimage is  $f'(A) = \{y \in Y : f(y) \in A\}$ . (Hatchen instead writes f'[A].) The map  $f: Y \rightarrow X$  is a covering map if every point  $x \in X$  has an open noble U such that f'(U) is disjoint union of open sets in Y, each of which is mapped homeomorphically to U by f. In particular, this country f(x) CY is a discrete subset.  $(\chi_{q},\chi_{3},\chi_{2},\chi_{2},\chi_{1})$  $f(x) = \{x_r, x_2, x_3, x_4\}$ 

Eg. $f: \mathbb{R} \to \mathbb{R}$ $x \mapsto \int_{0}^{x \sin \frac{1}{2}} x^{\pm 0};$ f  is not a concring map	$\overline{\mathcal{F}}(\mathcal{O}) = \left\{ O_{1}^{\pm \frac{1}{m}}, \pm \frac{1}{2\pi}, \pm \frac{1}{3\pi}, \cdots \right\}$
If $f: Y \rightarrow X$ is a covering map then $f$ is locally a home open allohed V of y such that $f _V : V \rightarrow f(V)$ is a homeomorphic	$\mathcal{X}^{1}$ , $\mathcal{X}^{1}$ , $\mathcal{X}^{2}$ , $X$
But the converse is not true: not every locally injective/homeono	replie map is a covering map.
Eq. Covers of S': There are many covering maps of S', with these. Think $S' = \{z \in \mathbb{C} :  z  = 1\}$ for every non-zero inter covering map. Eq. $P_2: S' \longrightarrow S'$ , $z \longmapsto z^2$ All fibres have s this is a z-to-1	$p_{\alpha}$ , $f_{\alpha}(z) = z$ , $f_{\alpha}: S \longrightarrow S$ is a

 $f: \mathbb{R} \longrightarrow S', t \mapsto e^{-\pi t}$  is a cover of indivite degree (  $\infty \cdot t_0 - 1$ ) If  $f: Y \longrightarrow X$  and  $g: \mathbb{Z} \longrightarrow Y$  are covering maps than for  $g: \mathbb{Z} \longrightarrow X$  is also