Math 5605 Algebraic Topology

Book 2

when are two covering maps of X equivalant? Say Y - + > X, Y'-+ > X are covering maps Graph i.e. combinatorial graph with vertices \$1,2,3,43 and edges \$\$1,23, \$1,33, ---, \$3,433. eg. X = X is the geometric realization of this graph braced as disjoint union of copies of [9,1] with endpoints identified as required by the picture. I and I have the same geometric realization although they are defferent graphes. 2 2 - 2 3',3" · 🛏 3 4',4" ---->4

When are two covers of X equivalent (isomorphic, i.e. essentially the same) ? Let $p: X_1 \to X_1$, $p: X_2 \to X$ be covering spaces of X_1 . We say $\theta: X_1 \to X_2$ is an equivalence or isomorphism of the two covers if θ is a homeomorphism and $p_2 \cdot \theta = p_1$, i.e. $X_1 \to X_2$. Pit KP2 But what about 2' 3' 4' W= 3' 4' valant to 4" 2" Wey X not equivalent Is this equivalent to 2→ X? No... 3',3" → 3 Another picture of these coreas 4' 4' F 7 4

To construct an refold cover of X, created one copy of [r] = {1,2,...,r} for each vertex of X. Then for each edge of X, match up the corresponding fibres in the cover using a chosen permitation. A triple cover Y->X is constructed as \sum Why is 2 more special than other positive integers (the addest prime of ell)? Consider X = 000 has many tiple covers including Y1 = 000 a The covering maps Y->X and Y2->X are not equivalent. Y2= 12 An equivalence between Y->X and itself (antomorphism of the cover) 16 is a deck transformation. This is the same as a homeomorphism Y->Y which preserves fibes. In the example above Y-> X has 3 actomorphisms (deck transformations) But Y, -> X has only one "Utrivial) deck transformation In a conveited roll cover, there are at most r deck transformations. If equality holds, the covering space is normal or Galois. (not the same as normal space in point set topology). Double covers are diverge normal. $V_{3} = Q_{4} O^{4} O^{4} O^{4}$

In group theory, subgroups of index 2 are normal. (separable) 0 P. M. 12 ateai is normal
In the case of lixtensions of Fields, the excension is morning.
For a field extension E2F, the degree of the extension is []
a vector space over F. The number of F-automorphisms of E (i. F: E) E automorphism fixing the fit is a normal or Galors
a vector space over F. We humber of Frantomorphisms is equal, it's a normal or Galors $\sigma(a)=q$ for all $e \in F$) is at most [E:F]. If this number is equal, it's a normal or Galors extension. Extensions of degree 2 (quadratic extensions) are always normal.
2 2 to-1 A dode calcol graph -> Peterson DEAB real proj. plane
Double covers : examples
B
S' is not a top, group unless ne \$1,33.
$S' = S \ge C : z = 1$
$S = \{z \in H : z = 1\}$ $H = \{a \neq bi \neq cj \neq dk : a, b, c, d \in R\}$ $i^2 = j^2 k^2 = ijk = -1$
\cong SU ₂ (C) = {A=[$\overset{\alpha}{\gamma}$ $\overset{\beta}{\beta}$] : $\alpha_{,\beta}, \gamma_{,} S \in C$, $AA^{*} = A^{*}A = I$, $det A = I$?
$SO_3(RR) = \{A \in R^{3\times3} : AA^T = A^T A = I, det A = I\}$
CI = 232 AIT IT = 2 I I an atal can product
$Q_3(IR) = SA \in \mathbb{R}^{3\times3}$: $AA^T = A^TA = I $ has two connected components $Z_3(IR) = SA \in \mathbb{R}^{3\times3}$: $AA^T = A^TA = I $ has two connected $Z_3(S^3) = 9 \pm I $ homeomorphis
$Q_3(\mathbb{R}) = A \in \mathbb{R}$: $AA = AA = I$ has two conducted comptoints Fact: $S^3 = SU_2(\mathbb{C}) \longrightarrow SO_3(\mathbb{R})$ is a double cover. $Z(S^3) = 9 \pm 1$ homeomorphis Fact: $S^3 = SU_2(\mathbb{C}) \longrightarrow SO_3(\mathbb{R})$ is a double cover. $PSU_2(\mathbb{C}) = S^3/2(S^3) \cong SO_2(\mathbb{R}) \cong P\mathbb{R}$.

In general for 173, T, (SO, (R)) = 2/22 Simply connocted donale cover Spin (R) -> SOn (R) is its universal cover constructed from Clifford Algebras (generalizing H) In any covering space p: Y-> X and given any path f: [0,1] -> X starting at f(0) = x0, the path f can be lifted to Y ie there is a path g: [0,1] -> Y such K: [0,1]-7X $Y = T^{2} \qquad f: [0,1] \rightarrow \chi \qquad is another path in$ $f: [0,1] \rightarrow \chi \qquad for x, to x, for x, to for the integral of the formation of th$ that f= pog ie. [0,1] (0,1] (0,1] (1) Assuming X is path-connected and p: Y -> X is a path-connected covering space, X = Y/~ where two points yo, y, EY satisfy yo~y, iff $p(y_0) = p(y_1)$.

Every path f in X from Xo to X, gives a bijection between fibres $\vec{p}'(x_0) \longrightarrow \vec{p}'(x_1)$. y. y. yz y3 P X In particular if p is k-to-1 at xo i.e. $|\vec{p}'(\pi_0)| = k$ then it is k-to-1 everywhere i.e. $|\vec{p}'(\pi)| = k$ for all $\pi \in X$. p'(x) = { yo, y1, y2, ... } P(x) = { 20 , 21 , 22 , ... } More generally, if f_t is a homotopy in X and we are given to, then every lifting of f_0 to Y extends to a lifting of f_t to Y. \mathbb{R}^2 is the universal cores of T^2 $\mathbb{R}^2 \xrightarrow{\gamma} T^2 = \mathbb{R}^2/\mathbb{Z}^2$ S'XR T²

Let X be a peth-connected space. Then X has a path-Connected and universal cover it X is path-convected bocally path-convected · seni-locally simply connected universal covez: Hawaiian earring CR2 Example of a top. space without a 5'85'8'... Comptable wedge Sim (CW complex) (not a CW conglex) Universal over of Ky privalent tree (also the universal coros of any privalent connected graph) i.e. regular of degree 3 connected

Universal cover of any connected regular graph of degree 4 is ∞ Cayley goeph of Free [a,b] = G Vertices correspond to elements of G Every vertex we G has edges to wa, wa', wb, wb' a $\tilde{\chi} = \chi/c$ Universal cover of K3,4 Ore 1,1,1,1,1,1,1,1,1 PR has S' as its universal cover $G = \{1, -1\}$ acts on S^2 → PR 1x = x(-1)x = -x (artipode of x) quotient of 5th by the antipodal.

X/~ = partition of X into equivalence classes of the equiv. relation "~"
X/G = partition of X into the orbits of G(x ~ xg or gG1)R Of a G
$(x \sim xg \circ gG)$
for all $g \in G$. $\chi \longrightarrow \chi'_{2}$
\mathbb{P}/\mathcal{A} N Cl
$\mathbb{R}/\mathbb{Z} \stackrel{\sim}{=} S' \qquad $
$\mathbb{R}^2/\mathbb{Z}^2 \stackrel{\simeq}{=} \mathbb{T}^2 = S' \times S'$
A non-discrete action of Z on R eq. (2)={2 ^k : k \in Z}
Gacts descretely on X if for every rex there is a one upld U of r such that
A non-discrete action of Z on R eg. $\{2\} = \{2^k : k \in \mathbb{Z}\} < \mathbb{R}^k = \mathbb{R}^{-\frac{1}{2}} $ G acts descretely on X if for every $x \in X$ there is an open north U of x such that the only $g \in G$ mapping $x \mapsto x^3 \in U$ is $g = 1$.
G= {x +> 2 ^k x+l : k, l \in Z } is non-discrete
If X is "nice" (peth-connected, locally path-connected, SLSC) then X has a simply connected (and path-connected) cover which is a minersal cover. It is unique up to isomorphism of covering spaces.
connected (and path-connected) cover which is a minersal cover. It is unique up to
isomorphism of contring spaces.

×	miversal over	Fix $x_{\varepsilon} \in X$, $\tilde{x}_{\varepsilon} \in \tilde{p}'(x_{\varepsilon})$ $G \cong \pi_{\varepsilon}(X, x_{\varepsilon})$)∈X̃.	Every other	(path-connected)	Υ-• X
• • • • • • •		G≌ π, (X, x₀).	· · · · · · · ·	has the form	$Y = \tilde{X}/H$,	4 ≤ € .
× ×	$= \tilde{X}/G$ $\tilde{S}' + \mu = e^{2\pi i t/k}$ R H = R	=S' P:ti Pk:z		}=Z ≤C has the	form H = kZ	, keZ.
· · · · · · · · · · · · · · · · · · ·		riversal corea X ->	χ ?	$\tilde{X} = S$ paths in	X standing at	the
		5/3		Chesen	X standing at loase point xo i.e. peths up to with fixed star point	} ~ homotopy
· · · · · · · ·				· · · · · · · · · · · ·	with fixed ster	fing and ending
					endpoint of	
		× Xo				
	and the second second					

Cohomelogy Consider a sequence of vector spaces over F	given hy
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \partial_{q} \\ \end{array} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{q} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ $	2; d' linear transformations (more generally V;
V'or V: has i just an index for purposes of reference.	V'are modules over
IF diodin = 0 then d is a boundary map and the sequence of Vi's is a <u>complex</u> . (similarly if d ⁱⁿ , d' = 0, d is a colorendary map.)	a ring R and d; d' are R-homomorphisms i.e. $d(av+bw) = adv+bdw$ $q,b \in F$; $v,w \in V$
Notable example : differential forms (smooth) Let X be a real n-manifold. In a nobbed of each point $x \in X$, bocal coordinates $(x_r,, x_n) = x$.	$x \in \mathcal{U} \subseteq \mathcal{X}$, we have
R= C°(U) = { smooth real valued functions on U}. V=R. d: Y->V = { differential + forms on U} = { f, dx, + fz V' is a vector space over R (∞-dimensional bot n-dimensional as module over R	$dx_2 + f_3 dx_3 + + f_n dx_n + f_i \in \mathbb{R}^3$
but n-dimensional as module over R	

£g.	$\chi = \mathbb{R}^2 - \{0,0\}$	$D \xrightarrow{0} V' \xrightarrow{d} V$	$d \rightarrow \gamma^2 \rightarrow 0$	· · · · · · · · · · · · ·
γ° =	3 smooth functions	$X \rightarrow R_3 = R = "o-form$	~S	· · · · · · · · · · · · · ·
		i.e. smooth differential		w is closed but not exact
	22- forms on X }			
ι V'ε	f dx + g dy = f	ge RZ		
Eg.	$\omega = \frac{\chi dy - y dx}{\chi^2 + y^2} $	(= 4)		
Integr	ate woren the path	YLt) = (cost, sint)	te [0,2π]	(,0)
ſω	$\int \frac{x dy - y dx}{x^2 + y^2} =$	$\gamma(t) = (\cos t, \sin t)$ $\int_{0}^{2\pi} \frac{\cos^{2}t}{1} dt + \sin^{2}t} dt = \int_{0}^{2\pi} dt$	$= 2\pi \qquad x = \cos \theta \\ dx = -s$	t i-t dt
xry :	global coordinates in		y = >	ut cost dt
ηθ÷	local coordinates (m	et global) coordina	$\theta \in R = V^{\circ}$ $dy = c$ ite functions $X \rightarrow$	R
	β = 2 π		or on UC	X x= rcost y= rsint
Ĩ		dr.=	W= 650 cost dr=rsint do sint dr + rcst do	Y(t): rt)=1
		and a second a second a dy se	sinfldr + rast do	· · · · · · · · · · · · · · · · · · ·

$\gamma^{o} \xrightarrow{d} \gamma^{\prime} \xrightarrow{d} \gamma^{2}$	IF X is an n-manit	old then
$f \longrightarrow df$	$V^{k} = \{k \text{-forms on } X\}$ of dimension $\binom{n}{k}$.	is an R-module
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	We need X to be ering	entable
$r \rightarrow dr$		
d is R-linear but not R-linear		
dlfg) + fdg		
$V^2 = \{ f dx r dy : f \in R \}$		
If X has local coordinates x1,, Xn	then $V' = \{f_i dx_i + \cdots + f_n dx$	u : f: eR
$dx_i \wedge dx_i = 0$	then $V' = \{f_i dx_i + \dots + f_n dx_i \}$ $V^2 = \{f_{i2} dx_i \wedge dx_2 + f_{i3} dx_i \}$	rades + fire R3
dr. Adri = - ari A ari		
Wedge products are R-multilinear eg.	\sim	w'nn fger ww'n
dx n(dy n dz) = (du n dy) n dz = du n dy)		with forms
= $(-dy \wedge dx) \wedge dz$) = $-dy \wedge (dx)$	$dz) = - dy \wedge (-dz \wedge dx) =$	dyndzndx
$dx \wedge (dy \wedge dz) = (dy \wedge dz) \wedge dx$	If wis an i-form and y	is a j-torm then
	WAGI = (-1) TAW is an iff-	Om

Vk is spanned by terms	like $f dx_{i_1} \wedge dx_{i_2} \wedge \cdots \wedge dx_{i_k}$ $dw = d(f dx_{i_1} \wedge \cdots \wedge dx_{i_k})$	$=: w \in V^{k} \ W L D G_{\leq i} < i_{2} < \cdots < i_{k} \leq n$ $dx_{i_{k}}) = df \Lambda dx_{i_{1}} \Lambda \cdots \Lambda dx_{i_{k}} \in V^{k+1}$
		$df = \frac{\partial f}{\partial x_1} dx_1 + \dots + \frac{\partial f}{\partial x_n} dx_n$
In R ³ with (global) coordinates x, y, z	1. Vk Vbet 1
P-VO- 5 smooth -	functions R3 -> R3	d: Vk -> Yber i is R-linear but not R-linear
Pick fe V [°] ie f: 10 dr 1, of 1	$\mathbb{R}^3 \longrightarrow \mathbb{R}$ is a support of for	motion is a very special 1-form se it is exact. (EdV°)
$a_{t} = \frac{1}{2x} a_{t} + \frac{1}{2y} a_{t}$	De ac e v mis becau	se it is exact. $(\in dV^{\circ})$
$d(df) = d(\partial x^{out} + \partial y)$	m + Frat)	
$= d(\widehat{\mathfrak{s}}) \wedge dx + d(-$ = $(\frac{\partial}{\partial f} \frac{\partial f}{\partial x} + \frac{\partial}{\partial f} \frac{\partial f}{\partial f}$	$\frac{\partial f}{\partial y}$) $\wedge dg + d\left(\frac{\partial f}{\partial z}\right) \wedge dz$ $dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial x} dz$) $\wedge dy + \left(\frac{\partial}{\partial z}\right)$	$\frac{\partial f}{\partial y} dx + \frac{\partial}{\partial y} \frac{\partial f}{\partial y} dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial y} dz \right) \wedge dy$
	$\frac{\partial f}{\partial z} dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial z} dz \right) \wedge dz = 0$	$d^{2} = 0 \qquad \text{i.e.} d^{2} \omega = d(dw)$ For all $\omega = 0$
		for all w?

Integine a surface $S \subset \mathbb{R}^3$. We integrate an arbitrary 2-form $w \in V^2$ over SIf $w = f(x,y,z) dx dy + g(x,y,z) dx dz + h(x,y,z) dy dz \in V^2$ then $\int w$ $= \int f(x,y,z) \, dx \wedge dy + \cdots$ $dx = \frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv$ local local u,v $\begin{array}{ll} If & x = x(u, \mathbf{v}) \\ y = y(u, \mathbf{v}) \end{array}$ dy - Dy du + Dy dv then f(x,y) dx Ady $dx A dy = \left(\frac{\partial x}{\partial u} du + \frac{\partial x}{\partial v} dv\right) \Lambda$ = $f(\pi(u,v), y(u,v))\left(\frac{\partial x}{\partial u}\frac{\partial y}{\partial v}-\frac{\partial x}{\partial v}\frac{\partial y}{\partial u}\right)du dv$ $\left|\frac{\partial(x,y)}{\partial(x,y)}\right| = \left|\frac{\partial y}{\partial x}\right| = \left|\frac{\partial y}{\partial y}\right|$ $\left(\frac{\partial y}{\partial u} du + \frac{\partial y}{\partial v} dv\right)$ $= \left(\frac{\partial x}{\partial u}\frac{\partial y}{\partial v} - \frac{\partial x}{\partial v}\frac{\partial y}{\partial u}\right) du \wedge dv$ For a region $X \subset \mathbb{R}^2$, γ path in X from P to Q, $\omega \in V'$, we define the path integral $\int_{Y} \omega$ If w= df (an exact 1-form) then $\int_Y w = \int_Y df = f(R) - f(P)$ by the Fundamental Theorem of calculus $\int_Y w = \int_Y df = f(R) - f(P)$ But for But if $Y' \sim Y$ in X then $\int_{Y'} w = \int_{Y'} w = f(0) - f(P)$ whenever w = dF.

Stokes' Theorem (general Fundamental Theorem of Calculus) Let X be an orientable n-manifold with boundary ∂X which is also orientable (n-1)-manifold. Let $\omega \in \Lambda'$, so that $d\omega \in \Lambda'$. Then $\int_{\partial X} \omega = \int_{X} d\omega$ Special case: X = [a,b] = R, $\partial X = \{a, b\}, \quad w = f \in \mathcal{R} \quad (support function \\ X \longrightarrow \mathcal{R})$ dw = f(x) dxSF' = Sf(t) dt = f(b) - f(a) $\int \omega - \int \omega = \int \omega = \int d\omega$ If in particular dw = 0 (w a closed + form) then RHS = 0 giving $\int_{Y} w = \int_{Y} w$. Exact forms are automatically closed (if w = df then $dw = d^2f = 0$). Not conversely! nuless X is simply connected.

The 'gap' between {closed forms } and {exact forms } is measured by colio molog y → V · -n-torms (n+1) - formes (n-1) forms image of d': V" -> V" is B" = { exact n-forms } kernel of $d^{n}: V \longrightarrow V^{n+1}$ is $Z^{n} = \begin{cases} closed n-forms \\ for vector space over R \end{cases}$ $H^{n} = Z^{n}_{B^{n}} = n^{n}$ cohonology group (or vector space over R) dim H" is the number of n-dim'd holes" in X.