

when are two covering maps of X equivalent? Say Y_1 > X, Y' +> X are covering maps Graph ie. combinatorial graph with vertices \$1,2,3,43 and edges \$81,23, \$1,33, --, \$3,43 } eg. X = X is the geometric realization of this graph bround as disjoint union of copies of [9,1] with endpoints identified as required by the picture. and have the same geometric realization although they are defferent graphs. A homomorphism of graphs $\Gamma = \Gamma'$ is a map $V(\Gamma) = V(\Gamma')$ preserving adjacency i.e. $x \sim y$ in $\Gamma \Rightarrow f(x) \sim f(y)$ in Γ' . A covering map of graphs is a homomorphism $(x,y \in V(\Gamma))$ inducing a bijection on the neighbours of each vertex of Γ are copies (and the preimage of the neighbours of each vertex $y \in \Gamma'$ are copies of the neighbours of Γ are copies of the neighbours of Γ are copies is the resolution of the number Γ is the resolution of the number Γ is the resolution of the number Γ is Γ is the resolution of the number Γ is Γ is the resolution of the number Γ is Γ is the resolution of the number Γ is Γ is the resolution of the number Γ is Γ is Γ is the resolution of the number Γ is Γ is Γ is the resolution of the number Γ is Γ is Γ is Γ is the resolution of the number Γ is Γ in Γ in 4',4" -->4

When are two covers of X equivalent (150morphic, i.e. essentially the same) ? Let $p: X_1 \longrightarrow X_2$, $p: X_2 \longrightarrow X_3$ be covering spaces of X_1 . We say $\theta: X_1 \longrightarrow X_2$ is an equivalence or isomorphism of the two covers if θ is a homeomorphism and $p: \theta = p_1$, i.e. $X_1 \longrightarrow X_2 \longrightarrow X_3$. Pi VPZ But what about 2 3' walnut to 4" 2" Is this equivalent to $Z \rightarrow X$? No... 3'3" ->3 Another picture of these cores 4'A" F->4

To construct an refold cover of X, created one copy of [r] = {1,2,...,r} for each vertex of X. Then for each edge of X, match up the corresponding fibring in the cover using a chosen permutation.

A triple cover Y-> X is constructed as Why is 2 more special than other positive integers (the addest prime of all)? Consider X = has many tiple covers including Y, = The covering maps Y-X and Y2-X are not equivalent. An equivalence between Y-> X and itself (automorphism of the cover) is a deck transformation. This is the same as a homeomorphism Y-> Y which preserves libes. In the example above Y-> X has 3 automorphisms (deck transformations) But Y, -> X has only one thirial) deck transformation

In a converted refold cover, there are at most reduck transformations.

If equality holds, the covering space is normal or Galois.

(not the same as normal space in point set topology).

Double convers are always normal.

In group theory, subgroups of index 2 are normal. In the case of extensions of fields, the extension is normal. For a field extension EDF, the degree of the extension is [E:F]: divension of E as (ir. o: E > E automorphism fixing a vector space over F. The number of F-automorphisms of E o(a)= q for all a ∈ F) is at most [E:F]. If this number is equal, it's a normal or Galois extension. Extensions of degree 2 (quadratic extensions) are always normal. Double covers: examples Sh is not a top, group unless ne \$1,33. S'= { se C: (lel = 1 }) 5= 9 = H: |2|=13 H= {a+bi+cj+dk: a,b,c,d \ R? i=j=k=ijk=-1

$$= \{A \in [x]^{\alpha}\} \} \quad \alpha, \beta, \gamma, S \in \mathbb{C}, \quad AA^{+} = A^{+}A = 1, \quad det \ A = 1\}$$

$$Q_{s}(\mathbb{R}) = \{A \in \mathbb{R}^{3\times3} : \quad AA^{-} = A^{-}A = 1, \quad det \ A = 1\}$$

$$Q_{s}(\mathbb{R}) = \{A \in \mathbb{R}^{3\times3} : \quad AA^{-} = A^{-}A = 1\} \quad \text{has two connected components}$$

$$Q_{s}(\mathbb{R}) = \{A \in \mathbb{R}^{3\times3} : \quad AA^{-} = A^{-}A = 1\} \quad \text{has two connected components}$$

$$Q_{s}(\mathbb{R}) = \{A \in \mathbb{R}^{3\times3} : \quad AA^{-} = A^{-}A = 1\} \quad \text{has two connected components}$$

 $SO_3(R) = \{A \in \mathbb{R}^{3\times 3} : AA^{-} = A^{-}A = I \}$ but $A = I\}$ $O_3(R) = \{A \in \mathbb{R}^{3\times 3} : AA^{-} = A^{-}A = I \} \text{ has two connected components}$ $Z(S^3) = \{\pm 1\} \} \text{ homeomorphism}$ Fact: $S^3 = SU_2(C) \longrightarrow SO_3(R)$ is a double core. $SU_2(C) = S^3/2(S^3) \cong SO_3(R) \cong PR$

In general for 1 = 3, T, (SO, (R)) = 2/27 Simply connected double cover

Spin (R) -> SOn (R) is its universal corer constructed from Clifford Algebras (generalizing H) In any cortring space p: Y -> X and given any path f: [0,1] -> X starting at f(0) = Xo, the path f can be lifted to Y

6-to-1

| 6-to-1 | 6-to-1 | 6-to-1 | 6-to-1 | 6-to-1 | 6-to-1 | 6-to-1 | 6-to-1 | 6-to-1 | | 6-to-1 ie there is a path g: [0,1] -> Y such Y= T2

f: [0,1] -> X is another path in
from X, to X,
homotopic to fo that f= pog ie.

[0,1] for and this lift is unique if we say which of the points in f (x) to take as the starting point for g. Assuming X is path-connected and p: Y -> X is a path-connected covering apace, X = Y/~ where two points yo, y, = Y satisfy yo~y, iff p(y0) = p(y1).

Every path f in X from x_0 to x_1 gives a bijection between fibres $p'(x_0) \longrightarrow p'(x_1)$. y. y2 y3 P (X) X In particular if p is k-to-1 at xo i.e. $|p'(\pi_0)| = k$ then it is k-to-1 everywhere ie. $|p'(\pi)| = k$ for all $\pi \in X$. p'(x0) = { y0, y1, y2, ... } P(x1) = { 20 , 21 , 22 , ... } More generally, if f_t is a homotopy in X and we are given to, then every lifting of f_0 to Y extends to a lifting of f_t to Y. \mathbb{R}^2 is the universal cover of \mathbb{T}^2 $\mathbb{R}^2 \longrightarrow \mathbb{T}^2 = \mathbb{R}^2/\mathbb{Z}^2$

Let X be a path-connected space. Then X has a path-connected and universal cover iff X is path-connected.

| locally path-connected| . semi-locally simply connected universal covez: Hawaiian earring CR2 Example of a top space without 5'V5'V5'V... Comptable wedge sun (CW complex) (not a CW conglex) Universal over of Ky trivalent tree (also the universal coros
of any trivalent connected graph)
i.e. regular of degree 3 connected

Universal cover of any connected regular graph of degree 4 15 Cayley goeph of Free [a,b] = G Vertices correspond to elements of G Every vertex $w \in G$ has edges to wa, wa', wb, wb' a Universal cover of K3,4

$$P^2R$$
 has S^2 as its universal cover.
 $S^2 \longrightarrow P^2R$ $G = \{1,-1\}$ acts on S^2
 $= S^2/G$ $1x = x$
quotient of S^2 $(-1)x = -x$ (antipode of x)
by the antipodal relation

X = partition of X into equivalence classes of the equiv. relation " X/G = partition of X into the orbits of G $(x \sim xg = gG1)$ for all ge G. R/7 = 51 ••••••• R2/22 = T2 = SxS' A non-discrete action of \mathbb{Z} on \mathbb{R} eg. $(2) = \{2^k : k \in \mathbb{Z}\} \setminus \mathbb{R}^x = \mathbb{R}^{-\frac{5}{3}} \setminus \mathbb{$ G= {x -> 2 x+l: k, l ∈ Z } is non discrete If X is nice (peth-connected, locally path-connected, SLSC) then X has a simply connected (and path-connected) cover which is a universal cover. It is unique up to isomorphism of covering spaces

 \tilde{X} universal over fix $x_0 \in X$, $\tilde{X}_0 \in \tilde{P}'(x_0) \in \tilde{X}$ $G = \pi_1(X, x_0).$ Every other covering space Y-> X (path-connected) has the form Y= X/H, H & G. eg R=S' time 2011/k H≤C has the form H= kZ, k∈Z. RH=S' X = { paths in X starting at the chosen boase point xo} / n
ie. paths up to homotopy with fixed starting and ending point Construction of the universal cores X > X p(f) = f(1) = X (the endpoint of f)

Cohomology Consider a sequence of vector spaces over F given by d' linear transformation $0 \longrightarrow V \stackrel{d}{\longrightarrow} V \stackrel{d'}{\longrightarrow} V^2 \stackrel{d'}{\longrightarrow} V^3 \stackrel{d'}{\longrightarrow}$ (more generally V; V' are motiles over V' or V. has i just an index for purposes of reference a ring R and d; d' If $\partial_i \circ \partial_{i+} = 0$ then $\partial_i is a boundary map and the sequence of <math>V_i$ is a complex. are R-homomorphisms i.e. d(av+bw) = adv+bdw (similarly if d''d'=0, dis a coloundary map.) abef: you Notable example: differential forms

Let X be a real n-manifold. In a nobbl of each point re UCX, et X be a real n-manion.

bocal coordinates (x,..., x,) = x. R= C°(U) = { smooth real valued tentions on U} d: V -> V = { differential + forms on U} = } f, dx, + f2dx2 + f3dx3 + ... + f.dxu : f. ER} V' is a vector space over R (∞ -dimensional) but n-dimensional as module over R

Eg.
$$X = \mathbb{R}^2 - \tilde{z}(0,0)$$
?

 $V' = \{s \text{ smooth functions } X \rightarrow \mathbb{R}\} = \mathbb{R} = [0 \text{ forms}]^n$
 $V' = \{s \text{ informs on } X\}$ i.e. smooth differential liferances

 $V' = \{s \text{ fdx} + g \text{ dy} : f \text{ ge } \mathbb{R}\}$

Eg. $\omega = \frac{x \text{ dy} - y \text{ dx}}{x^2 + y^2}$

Integrate ω over the path $\Upsilon(t) = (\cos t, \sin t)$ to $\{0, 2\pi\}$ (in)

 $\int \omega = \int \frac{x \text{ dy} - y \text{ dx}}{x^2 + y^2} = \int \frac{\cos^2 t}{\cos^2 t} \frac{dt}{dt} + \sin^2 t} dt = \int \frac{\cos^2 t}{\sin^2 t} dt = 2\pi$
 $\chi = \sin^2 t$
 $\chi = \cos^2 t$
 $\chi = \sin^2 t$
 $\chi = \cos^2 t$
 $\chi = \cos$

If X is an x-manifold them $V' \xrightarrow{d} V' \xrightarrow{d} V'$ Vk = { k-forms on X} is an R-module f -> df of dimension ("). x -> dx We need X to be orientable y -> dy d is R-linear but not R-linear difq) + fdg $V^2 = \{ f dx \wedge dy : f \in R \}$ If X has local coordinates $x_1, ..., x_n$ then $V' = \{f_i dx_1 + ... + f_n dx_n : f_i \in R \}$ $dx_i \wedge dx_i = 0$ $V' = \{f_i dx_1 \wedge dx_2 + f_i s dx_1 \wedge dx_3 + ... : f_i \in R \}$ $dx_i \wedge dx_i = 0$ dr. ndr. = - dr. ndr. Wedge products are R-multillinear eg. (fw+gw) / n = fwnn + q w'nn fgeR diff forms dx n(dy ndz) = (dx ndy) ndz = dx ndy ndz = (-dyndx) rdz)=-dyn (dxrdz) = -dyn (-dzndx) = dyndzndx dx 1 (dy 1 dz) = (dy 1 dz) 1 dx If w is an i-form and of is a j-form then wron = (-1) on w is an i+j-form.

Vh is spanned by terms like
$$f dx_i \wedge dx_i \wedge A dx_i = : \omega \in V^k \text{ WLDG}_{\leq i} < i_2 < ... < i_k \leq n$$
 $V^k \xrightarrow{d} V^{k+1}$
 $d\omega = d(f dx_i \wedge A dx_i) = df \wedge dx_i \wedge A dx_i \in V^{k+1}$
 $df = \frac{\partial f}{\partial x_i} dx_i + ... + \frac{\partial f}{\partial x_n} dx_n$

In R^3 with (global) coordinates x, y, z
 $f = V^0 = S$ smooth functions $f = R^3 \rightarrow R^3$
 $f = V^0 = S$ smooth functions $f = R^3 \rightarrow R^3$
 $f = V^0 = S$ smooth functions $f = R^3 \rightarrow R^3$
 $f = V^0 = S$ smooth functions $f = R^3 \rightarrow R^3$

$$R = V^0 = S$$
 smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth functions $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smooth $R^3 \rightarrow R^3$
 $R = V^0 = S$ smoot

$$d(df) = d\left(\frac{\partial f}{\partial x}dx + \frac{\partial f}{\partial y}dy + \frac{\partial f}{\partial z}dz\right)$$

$$= d\left(\frac{\partial f}{\partial x}\right) \wedge dx + d\left(\frac{\partial f}{\partial y}\right) \wedge dy + d\left(\frac{\partial f}{\partial z}\right) \wedge dz$$

$$= d\left(\frac{\partial f}{\partial x}\right) \wedge dx + d\left(\frac{\partial f}{\partial y}\right) \wedge dy + d\left(\frac{\partial f}{\partial z}\right) \wedge dz$$

 $= d\left(\frac{\partial f}{\partial x}\right) \wedge dx + d\left(\frac{\partial f}{\partial y}\right) \wedge dy + d\left(\frac{\partial f}{\partial z}\right) \wedge dz$ $= \left(\frac{\partial}{\partial x} \frac{\partial f}{\partial x} dx + \frac{\partial}{\partial y} \frac{\partial f}{\partial x} dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial x} dz\right) \wedge dy + \left(\frac{\partial}{\partial x} \frac{\partial f}{\partial y} dx + \frac{\partial}{\partial y} \frac{\partial f}{\partial y} dy + \frac{\partial}{\partial z} \frac{\partial f}{\partial y} dz\right) \wedge dy$ + $\left(\frac{\partial}{\partial x}\frac{\partial f}{\partial z}dx + \frac{\partial}{\partial y}\frac{\partial f}{\partial z}dy + \frac{\partial}{\partial z}\frac{\partial f}{\partial z}dz\right) \wedge dz = 0$