Math 5605 Algebraic Topology

Book 2

when are two covering maps of X equivalant? Say Y - + > X, Y'-+ > X are covering maps Graph i.e. combinatorial graph with vertices \$1,2,3,43 and edges \$\$1,23, \$1,33, ---, \$3,433. eg. X = X is the geometric realization of this graph braced as disjoint union of copies of [9,1] with endpoints identified as required by the picture. I and I have the same geometric realization although they are defferent graphes. 2 2 - 2 3',3" · 🛏 3

When are two covers of X equivalent (isomorphic, i.e. essentially the same) ? Let $p: X_1 \to X_1$, $p: X_2 \to X$ be covering spaces of X_1 . We say $\theta: X_1 \to X_2$ is an equivalence or isomorphism of the two covers if θ is a homeomorphism and $p_2 \cdot \theta = p_1$, i.e. $X_1 \to X_2$. Pit KP2 But what about 2' 3' 4' W= 3' 4' valant to 4" 2" Wey X not equivalent Is this equivalent to 2→ X? No... 3',3" → 3 Another picture of these coreas 4' 4' F 7 4

To construct an refold cover of X, created one copy of [r] = {1,2,...,r} for each vertex of X. Then for each edge of X, match up the corresponding fibres in the cover using a chosen permitation. A triple cover Y->X is constructed as \sum Why is 2 more special than other positive integers (the addest prime of ell)? Consider X = 000 has many tiple covers including Y1 = 000 a The covering maps Y->X and Y2->X are not equivalent. Y2= 12 An equivalence between Y->X and itself (antomorphism of the cover) 16 is a deck transformation. This is the same as a homeomorphism Y->Y which preserves fibes. In the example above Y-> X has 3 actomorphisms (deck transformations) But Y, -> X has only one "Utrivial) deck transformation In a conveited roll cover, there are at most r deck transformations. If equality holds, the covering space is normal or Galois. (not the same as normal space in point set topology). Double covers are diverge normal. $V_{3} = Q_{4} O^{4} O^{4} O^{4}$

In group theory, subgroups of index 2 are normal. (separable) 0 P. M. 12 ateai is normal
In the case of lixtensions of Fields, the excension is morning.
For a field extension E2F, the degree of the extension is []
a vector space over F. The number of F-automorphisms of E (i. F: E) E automorphism fixing the fit is a normal or Galors
a vector space over F. We humber of Frantomorphisms is equal, it's a normal or Galors $\sigma(a)=q$ for all $e \in F$) is at most [E:F]. If this number is equal, it's a normal or Galors extension. Extensions of degree 2 (quadratic extensions) are always normal.
2 2 to-1 A dode calcol graph -> Peterson DEAB real proj. plane
Double covers : examples
B
S' is not a top, group unless ne \$1,33.
$S' = S \ge C : z = 1$
$S = \{z \in H : z = 1\}$ $H = \{a \neq bi \neq cj \neq dk : a, b, c, d \in R\}$ $i^2 = j^2 k^2 = ijk = -1$
\cong SU ₂ (C) = {A=[$\overset{\alpha}{\gamma}$ $\overset{\beta}{\beta}$] : $\alpha_{,\beta}, \gamma_{,} S \in C$, $AA^{*} = A^{*}A = I$, $det A = I$?
$SO_3(RR) = \{A \in R^{3\times3} : AA^T = A^T A = I, det A = I\}$
CI = 232 AIT IT = 2 I I an atal can product
$Q_3(IR) = SA \in \mathbb{R}^{3\times3}$: $AA^T = A^TA = I $ has two connected components $Z_3(IR) = SA \in \mathbb{R}^{3\times3}$: $AA^T = A^TA = I $ has two connected $Z_3(S^3) = 9 \pm I $ homeomorphis
$Q_3(\mathbb{R}) = A \in \mathbb{R}$: $AA = AA = I$ has two conducted comptoints Fact: $S^3 = SU_2(\mathbb{C}) \longrightarrow SO_3(\mathbb{R})$ is a double cover. $Z(S^3) = 9 \pm 1$ homeomorphis Fact: $S^3 = SU_2(\mathbb{C}) \longrightarrow SO_3(\mathbb{R})$ is a double cover. $PSU_2(\mathbb{C}) = S^3/2(S^3) \cong SO_2(\mathbb{R}) \cong P\mathbb{R}$.

In general for 173, T, (SO, (R)) = 2/22 Simply connocted donale cover Spin (R) -> SOn (R) is its universal cover constructed from Clifford Algebras (generalizing H) In any covering space p: Y-> X and given any path f: [0,1] -> X starting at f(0) = x0, the path f can be lifted to Y ie there is a path g: [0,1] -> Y such K: [0,1]-7X $Y = T^{2} \qquad f: [0,1] \rightarrow \chi \qquad is another path in$ $f: [0,1] \rightarrow \chi \qquad for x, to x, for x, to for the integral of the formation of th$ that f= pog ie. [0,1] (0,1] (0,1] (1) Assuming X is path-connected and p: Y -> X is a path-connected covering space, X = Y/~ where two points yo, y, EY satisfy yo~y, iff $p(y_0) = p(y_1)$.

Every path f in X from Xo to X, gives a bijection between fibres $\vec{p}'(x_0) \longrightarrow \vec{p}'(x_1)$. y. y. yz y3 P X In particular if p is k-to-1 at xo i.e. $|\vec{p}'(\pi_0)| = k$ then it is k-to-1 everywhere i.e. $|\vec{p}'(\pi)| = k$ for all $\pi \in X$. p'(x) = { yo, y1, y2, ... } P(x) = { 20 , 21 , 22 , ... } More generally, if f_t is a homotopy in X and we are given to, then every lifting of f_0 to Y extends to a lifting of f_t to Y. \mathbb{R}^2 is the universal cores of T^2 $\mathbb{R}^2 \xrightarrow{\gamma} T^2 = \mathbb{R}^2/\mathbb{Z}^2$ S'XR T²

Let X be a peth-connected space. Then X has a path-Connected and universal cover it X is path-convected bocally path-convected · seni-locally simply connected universal covez: Hawaiian earring CR2 Example of a top. space without a 5'85'8'... Comptable wedge Sim (CW complex) (not a CW concepterx) Universal over of Ky privalent tree (also the universal coros of any privalent connected graph) i.e. regular of degree 2 connected

Universal cover of any connected regular graph of degree 4 is ∞ Cayley goeph of Free [a,b] = G Vertices correspond to elements of G Every vertex we G has edges to wa, wa', wb, wb' a $\tilde{\chi} = \chi/c$ Universal cover of K3,4 Ore 1,1,1,1,1,1,1,1,1 PR has S' as its universal cover $G = \{1, -1\}$ acts on S^2 → PR 1x = x(-1)x = -x (artipode of x) quotient of 5th by the antipodal.

X/~ = partition of X into equivalence classes of the equiv. relation "~"
X/G = partition of X into the orbits of G(x ~ xg or gG1)R Of a G
$(x \sim xg \circ gG)$
for all $g \in G$. $\chi \longrightarrow \chi'_{2}$
\mathbb{P}/\mathcal{A} N Cl
$\mathbb{R}/\mathbb{Z} \stackrel{\sim}{=} S' \qquad $
$\mathbb{R}^2/\mathbb{Z}^2 \stackrel{\simeq}{=} \mathbb{T}^2 = S' \times S'$
A non-discrete action of Z on R eq. (2)={2 ^k : k \in Z}
Gacts descretely on X if for every rex there is a one upld U of r such that
A non-discrete action of Z on R eg. $\{2\} = \{2^k : k \in \mathbb{Z}\} < \mathbb{R}^k = \mathbb{R}^{-\frac{1}{2}} $ G acts descretely on X if for every $x \in X$ there is an open north U of x such that the only $g \in G$ mapping $x \mapsto x^3 \in U$ is $g = 1$.
G= {x +> 2 ^k x+l : k, l \in Z } is non-discrete
If X is "nice" (peth-connected, locally path-connected, SLSC) then X has a simply connected (and path-connected) cover which is a minersal cover. It is unique up to isomorphism of covering spaces.
connected (and path-connected) cover which is a minersal cover. It is unique up to
isomorphism of contring spaces.

×	miversal over	Fix $x_{\varepsilon} \in X$, $\tilde{x}_{\varepsilon} \in \tilde{p}'(x_{\varepsilon})$ $G \cong \pi_{\varepsilon}(X, x_{\varepsilon})$)∈X̃.	Every other	(path-connected)	Υ-• X
• • • • • • •		G≌ π, (X, x₀).	· · · · · · · ·	has the form	$Y = \tilde{X}/H$,	4 ≤ € .
× ×	$= \tilde{X}/G$ $\tilde{S}' + \mu = e^{2\pi i t/k}$ $R H = R$	=S' P:ti Pk:z		}=Z ≤C has the	form H = kZ	, keZ.
· · · · · · · · · · · · · · · · · · ·		riversal corea X ->	χ ?	$\tilde{X} = S$ paths in	X standing at	the
		5/3		Chesen	X standing at loase point xo i.e. peths up to with fixed star point	} ~ homotopy
· · · · · · · ·				· · · · · · · · · · · ·	with fixed ster	fing and ending
					endpoint of	
		× Xo				
	and the second second					

Cohomelogy Consider a sequence of vector spaces over F	given hy
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \partial_{q} \\ \end{array} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{q} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ V \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \partial_{z} \\ \end{array} \\ $	2; d' linear transformating (more generally V;
V'or V: has i just an index for purposes of reference.	V'are modules over
IF diodin = 0 then d is a boundary map and the sequence of Vi's is a <u>complex</u> . (similarly if d ⁱⁿ , d' = 0, d is a colorendary map.)	a ring R and d; d' are R-homomorphisms i.e. $d(av+bw) = adv+bdw$ $q,b \in F$; $v,w \in V$
Notable example : differential forms (smooth) Let X be a real n-manifold. In a nobbed of each point $x \in X$, bocal coordinates $(x_r,, x_n) = x$.	$x \in \mathcal{U} \subseteq \mathcal{X}$, we have
R= C°(U) = { smooth real valued functions on U}. V=R. d: Y->V = { differential + forms on U} = { f, dx, + fz V' is a vector space over R (∞-dimensional bot n-dimensional as module over R	$dx_2 + f_3 dx_3 + + f_n dx_n + f_i \in \mathbb{R}^3$
but n-dimensional as module over R	