Math 5605 Algebraic Topology

Book 3

Cup product for simplicial cohomology HK × H - + HK+R
makes $H(X; \mathbb{Z})$ or $H(X; \mathbb{R})$ into a graded ring.
To explain let's talk about singular honology and cohomology.
Singular k-chains: (k=0,1,2,3,) ways of mapping k-simplices i-to X, not necessarily embeddings.
Take an abstract k-simplex fall subsets at (0,12,12).
This has a geometric relization to 7 X
$\Delta = \Delta^{n} = \left\{ (v_{0}, v_{1},, v_{n}) : v_{i} \geqslant 0, \geq v_{i} = 1 \right\} \subset \mathbb{R}^{n+1} (\text{ convex combinations of } e^{-}_{e}(1, 0,, 0), e_{1},, e_{n} = (0,, 0, i) \right)$
large contric coordinates
An n-chain is a formel linear combination of maps $\sigma: \Delta \longrightarrow X$. $C_n = \{n-chains in X\} = C_n(X; R)$, R any commutative ring with 1 eg. R. Z., \mathbb{F}_2
$C^{*} = C_{h}^{*} = \sum_{n=0}^{n} \operatorname{cochains} \operatorname{in} X_{n}^{*} = \operatorname{Hom} (C_{n}, R) = \sum_{n=0}^{n} \operatorname{Hom} (C_{n}, R) = \sum_{n=0}^{n$
$\partial: C_n \longrightarrow C_{n-1}, \ \partial \sigma = \sum_{i=0}^{\infty} \sigma \left[\left[v_0, \dots, \hat{v}_i, \dots, v_n \right] \right] \qquad \qquad$
$\mathfrak{Z}^n: \mathcal{C}^n \longrightarrow \mathcal{C}^n$

If $\phi \in C^k$ k-cochain, then $\phi \cup \psi \in C^{k+l}$ cochain; for any $\psi \in C^l$ l -cochain $(\phi \cup \psi)(\sigma) = \phi(\sigma [v_{0, \gamma}, v_{k}]) \psi(\sigma [v_{k}, \gamma)]$	(k+l))-chain) [r	5 : L 10,, V _{k+}	krl_ e]→	→) (X Vo ₁ , 1	Vine
This gives a bilinear product C* × C ⁴ → C ⁴⁴ inducing a bilinear product H* × H ⁴ → H ⁴ (cup product)		· · · ·	· · ·	· · ·	· ·	· · ·	•
making $H^*(X; \mathbb{R})$ into a graded ring $\bigoplus H^i(X; \mathbb{R})$. $i \neq 0$	· · ·	· · · ·	· · · ·	· · ·	· · ·	· · ·	•
Eq. $X = P^{n}R$, $R = F_{2} = \mathbb{Z}/2\mathbb{Z}$, $H^{i}(X; F_{2}) \cong \{F_{2}, 0 \le i \le P^{n}R = \{1 - dimin \}$ subspaces of \mathbb{R}^{n+1} $3 = S^{n}/$ antipodolity.	5 n 5 ≤ n 5	· · · ·	· · · ·	· ·	· ·		•
DB · N · C	₽ [°] ₽	5 Q 193	prieileble ? n is	odd .	· ·	· · ·	•
$H^*(X; \mathbb{F}_2) \cong \mathbb{F}_2[x]/(x^{++})$ Additively: { $a_1+a_2x^+ + a_2x^+ + $	n > n >	2 : 1	· · · ·	· · ·	· ·	· ·	•
Borsule- Man Theorem : There is no antipodel map $S^{n-1} + S^{n-1}$ for Proof is lay contradiction i.e. $f(-x) = -f(x)$		· · · ·	· · · ·	· ·	· ·	· ·	•

Suppose f: S Then & indu	"-> S"' is anti- cer a well-defined v	$\begin{array}{ccc} \text{odel} & (f(-x) = \\ \text{uap} & P^{"}R \xrightarrow{f} P^{"} \end{array}$	-f(x)	π, (P [*] ℝ), ≓	2/2Z
· · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	±x (xe S")	f(x)	p [*] maps a	generator st
f induces t	$F^*: H^*(P^*R; R_2) - Ar$	→ H*(P"R; FE)	mapping x		TR) to a generator TR (P'R)
	₩ ₩[x]/ _(x")	Fz[x] (x"+1)			· · · · · · · · · · ·
· · · · · · · · · · · · ·	$\chi^{\mu} \longrightarrow \chi^{\mu}$; contradiction	• • • • • • • • • • • • • • • • • • •	· · · · · · · · · ·	· · · · · · · · · · ·
DF A is an additi	ve abelian gp then	A º Z ⊕ T(A) wh	ere T(A) = torsi	on subgp of A =	Edements of A of finite order }
k = rank A = di For any chain compl we have homeloan	$\begin{array}{ccc} n & A & \\ a_{\mu} & C_{\mu} & \xrightarrow{\partial_{\mu}} & C_{\mu} & \xrightarrow{\partial_{\mu+1}} & \\ groups & H_{\mu} & = & kere \end{array}$	$\gamma T(A)$ Canonically $\gamma C_2 \xrightarrow{\partial_1} C_1 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_1 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_2} C_2 \xrightarrow{\partial_1} C_2 \xrightarrow{\partial_2} C_2 \partial$	o (orer well-defined rank	Q or R) H $(X; Z) = rank H$	(X:D) = rank H. (iir)
and Euler character $\gamma(X) = 2$	istic : (-1)' namk H _i (X) =	Étérante C:	Charles Charles	$\dim C_n = \dim ke$ $\dim H_n = \dim$	r d _n + dim in O _n
eg χ(S [*]) =	° 4-6+ 4 = 2				
4		· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·	· · · · · · · · · · ·

Closed 2-manifolds	i.e. connected	compact	2-manifolds	without	boundary	are	comptetely	classified	
Closed 2-menifolds using Euler character 2 T ² P	rteristic and ori	entability (Yes/No)							•
dim Hz 1 1 dim H, 0 2 0	0								•
dim Ho 1 1				• • • • •					
X(X) 2 0	<_p			· · · · · ·	· · · · · ·	· · · · ·		· · · · ·	•
	77 ¥ P ² R 3+2=2		K kieja		· · · · · ·	· · · ·	· · · · ·	· · · · · ·	•
(-3+2=0 ,	- One	2-3+2=		3+2=0	· · · · · ·	· · · ·	· · · · · ·	· · · · · ·	•
a a Trans a serie Trans	· · · · T [*] · · · T	2				· · · ·	· · · · · ·	· · · · · ·	•
$\chi(S_1 \# S_2) = \chi(S_1) + \chi(T_*T^2) = \chi(T$	f(1) - 2 = 7	or any 0+0-2	two closed	surtaces	, γι, 3 2 , 1	· · · ·	· · · · · ·	· · · · · ·	•
	an a		χ(τ* … #	T)= 2-	2 g 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 ⁻ 8	me of o	rientible	•
$\gamma(\hat{PR} \neq \hat{PR}) = 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$		· · · · ·	· · · · · · ·						•
	- 2 - 0								•

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Exact sequences $\xrightarrow{\partial_{n+1}} C_n \xrightarrow{\partial_n} C_{n-1} \xrightarrow{\partial_{n-1}} ker \partial_n = im \partial_{m_1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$0 \rightarrow c \rightarrow 0$ is exact iff $(= 0)$
If $f: X \to X$ is an entomorphism of an abell. $gp. \Lambda$ (of vertice space) (at these in the abelian cotegory) some important short exact sequences are $0 \to \ker f \to X \to f(X) = 0$ $0 \leftarrow colore f \leftarrow X \leftarrow f(X) \leftarrow 0$ If $f: X \to Y$ then $coloref = \frac{Y}{f(X)}$ If $\cdots \to \Lambda \to B \to C \to 0$ and $0 \to C \to D \to E \to \cdots$ are exact then we get an exact sequence is $\Lambda \to A \to B \to C \to 0$ and $0 \to C \to D \to E \to \cdots$ are exact then we get an exact sequence is $0 \to \ker f \to X \stackrel{f}{\to} X \to coloref \to 0$ is exact. If $X \to a$ fin dink vector space over F then the Exter Char. of this sequence is	$0 \rightarrow A \rightarrow 7B \rightarrow 0$ is exact $A \cong B$
$0 \longrightarrow \ker f \longrightarrow X \longrightarrow f(x) \longrightarrow 0$ $0 \leftarrow \operatorname{colar} f \leftarrow X \leftarrow f(x) \leftarrow 0$ If $f: X \rightarrow Y$ then $\operatorname{colar} f = \bigvee_{f(x)} f(x)$ $If \cdots \rightarrow A \longrightarrow B \longrightarrow C \longrightarrow 0$ and $0 \longrightarrow C \longrightarrow D \longrightarrow E \longrightarrow \cdots$ are exact then we get an exact seq. $\longrightarrow A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$ $A \longrightarrow B \longrightarrow D \longrightarrow E \longrightarrow \cdots$	0-> A-> B-> C-> O is exact (short exact) itt (= 0/A
$0 \leftarrow cokarF \leftarrow X \leftarrow f(X) \leftarrow 0$ If $f: X \rightarrow Y$ then $cokart = \int_{P(X)}^{P(X)} F(X)$ If $\dots \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $0 \rightarrow C \rightarrow D \rightarrow F \rightarrow \dots$ are exact then we get an exact seq. $\rightarrow A \rightarrow B \rightarrow D \rightarrow E \rightarrow \dots$ $A \rightarrow B \rightarrow D \rightarrow D$	It f: X -> X is an endomorphism of an abov. gp. 1 (or other spice) (un abov abelian category) some important short exact sequences are
$0 \leftarrow cokarF \leftarrow X \leftarrow f(X) \leftarrow 0$ If $f: X \rightarrow Y$ then $cokart = \int_{P(X)}^{P(X)} F(X)$ If $\dots \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ and $0 \rightarrow C \rightarrow D \rightarrow F \rightarrow \dots$ are exact then we get an exact seq. $\rightarrow A \rightarrow B \rightarrow D \rightarrow E \rightarrow \dots$ $A \rightarrow B \rightarrow D \rightarrow D$	$0 \longrightarrow \ker f \longrightarrow X \longrightarrow f(X) \longrightarrow 0$
0 -> kerf -> X + X -> cokerf -> 0 is exact. If X is a fin dink vector space over F then the Ereler Char. of this sequence is	$0 \leftarrow cokenf \leftarrow X \leftarrow f(x) \leftarrow 0$ If $f: X \rightarrow Y$ then $cokent = f(x)$
0 -> kerf -> X + X -> cokerf -> 0 is exact. If X is a fin dink vector space over F then the Ereler Char. of this sequence is	If , A ->B->C->O and O->C->D->E-> are exact then we get an exact seq.
0 -> kerf -> X -> X -> cokerf -> 0 is exact. If X is a fin divid vector space over F then the Ereler Char. of this sequence is	$A \rightarrow A \rightarrow B \rightarrow D \rightarrow E \rightarrow \cdots$
0->kerf -> X -> X -> coherf -> 0 is exact. If X is a fin divel vector space over F then the Ereler Char. of this sequence is	
0->kerf -> X -> X -> coherf -> 0 is exact. If X is a fin divel vector space over F then the Ereler Char. of this sequence is	
If X is a fin dind vector space over F then the Euler Char. of this sequence is	
	If X is a fin divid vector space over F then the Euler char. of this sequence is
f = f + f + f + f + f + f + f + f + f = 0	$\int dx + dx $
If T: X -> X is an operator (endomorphism) (don't worry about boundedness)	If T: X -> X is an operator (endomorphism) (don't worry about boundedness)
the index of T is ind T'= dim color T - di- ben T when both or noise when some time (i.e. T is Fredholm).	dim cokent - dim X other the performance (endomorphism) (don't worry about boundedness) If $T: X \rightarrow X$ is an operator (endomorphism) (don't worry about boundedness) the index of T is ind $T = \dim \operatorname{coken} T - \dim \ker T$ when both of these terms are finite the index of T is ind $T = \dim \operatorname{coken} T - \dim \ker T$ when both of these terms are finite (i.e. T is Fredholm).

Theorem: Let S,T: X-7 X be operators (1in. transf). Of the three operators S,T, ST, then whenever two are Fredholm then so is the third and in this case ind ST = ind S + ind T. (or abd. gps) S,T: X->X we have an exact sequence In general (i.e. for any lin. transf. 0 -> kerT -> kerS -> cokerT -> cokerST -> cokerST -> cokerS -> 0 So its Euler characteristic is zero. ie. indS + ind T - ind ST = 0. Snake Lemma In an abel. category we have a commitative diagram with exact rows then we have a six-term exact seq. A->B-d>C->O $\rightarrow A' \xrightarrow{f'} B' \xrightarrow{g'} C'$ ker a --- > ker l -- > ker c -> coher a -> coher lo --> coher c. bon a -> bon bon bon c -> ken c e e v A->B-dre-ナの 0 -> A' -> B' - 9'> C' polera -> cokub -> cokur c

Group Cohomology. : used in the study of group extensions
If 6 and H are groups then an extension of H by G is a group X giving
an exact sequence
Note: Groups are not necessarily exclime. We are asking for a new group X having a normal subgp $\stackrel{\sim}{=} H$ st. $X_H \stackrel{\sim}{=} G$ G on top, H on the bottom.
Trivial: X = G × H. (Split extension)
C is now an arbitrary group and A is an abalian group (G multiplicative; A additive notation) on which G acts (each geG gives $g \in GL(A)$ (automorphisms of A as an abal, gg or \mathbb{Z} -module) $(g,g_z)(a) = g(g_z(a));$ $g(a+b) = ga + gb;$ $1a = a$. $G \xrightarrow{homo}$ Ant $A = GL(A)$ (fixed) We construct an extension of A by G i.e. an exact sequence of gps $1 \longrightarrow A \longrightarrow \widehat{G} \longrightarrow G \longrightarrow 1$ i.e. \widehat{G} is a gp with normal subgp. iso to A with $\widehat{G}_A \cong G$.
We construct an extension of A by G i.e. an exact sequence of gps
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
We construct an extension of A by G i.e. an exact sequence of gps $1 \rightarrow A \rightarrow \hat{G} \rightarrow G \rightarrow 1$ i.e. \hat{G} is a gp with normal subgp is to A with $\hat{G}_{A} \cong G$ $\downarrow \downarrow X \qquad \downarrow P \qquad \downarrow Y \qquad \downarrow A$ $1 \rightarrow A \rightarrow \hat{G} \rightarrow G \rightarrow 1$ Two extensions \hat{G} \hat{G} are equivalent if we have a commutative diagram as shown with x, p, Y isom- orphisms of groups (with exact rows), Note that the action of G on A is fixed throughout. Cohomology of groups is the bol for this
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $
$ \begin{array}{c} & & \\ & & \\ & & \\ \end{array} $

$ \begin{array}{c} \overset{{}_{\scriptstyle{\mathcal{S}}}}{\underset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}{\overset{\scriptstyle{\mathcal{S}}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}}{}}}}{\overset{\scriptstyle{\mathcal{S}}}}{\overset{\scriptstyle{\mathcal{S}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}}$	an exact sagrance of additive abel. gps where $C^{k} = C^{k}(G; A)$ is the abel. gp. i.e. Z-module
GXGX XG i.e. & tuples & G	Given $a \in C^{\circ}$ i.e. $a \in A$, $Sa \in C'$ is $Sa : G \longrightarrow A$ Given $f \in C'$ i.e. $f : G \longrightarrow A$ Construct $Sf \in C^{\circ}$ i.e. $(Sf) : G \times G \longrightarrow A$ $(Sf) (g, h) = g f(h) - f(gh) + f(g) \in A$.
Check: $C \stackrel{*}{\leftarrow} C \stackrel{*}{\leftarrow} C \stackrel{*}{\leftarrow} C \stackrel{*}{\circ} S \stackrel{*}{=} 0 \stackrel{?}{\sim}$ Take $a \in C \stackrel{*}{=} A$. $(Sa): C \stackrel{*}{\to} A$ (Sa)(g) = ga - a.	Given $f \in C^2$ i.e. $f: 6 \times 6 \longrightarrow A$ (onstruct $(Sf): G \times G \times G \longrightarrow A$ (Sf)(g,h,k) = gf(h,k) - f(gh,k) + f(g,hk) - f(g,h) See p.2 bottom of handout for $S: C^k \longrightarrow C^{k+1}$ in general
$\begin{aligned} \hat{S}_{a} : G \times G & \longrightarrow A \\ (\hat{S}_{a}) (f,g) &= f(\hat{S}_{a})(g) - (\hat{S}_{a})(f_{g}) + \hat{S}_{a}(f) \\ &= f(g_{a}-a) - ((\hat{f}_{a})(a) - a) + (\hat{f}_{a}-a) \\ &= f(g_{a}-f_{a}) - (\hat{f}_{a})(a) - a + f(a-a) \\ &= f(g_{a}-f_{a}) - f(g_{a}) + g(g_{a}) + f(g_{a}-g) \end{aligned}$	
Classify extensions 1-> A-> Ĝ-> G-> 1 i.e. Ĝ is a group with normal subgp A w i.e. A has a complementary subgp in Ĝ. So H'(G; A) classifies the complementary subgps	where G is a group acting on an abelian $g p A$ with $\hat{G}/A \cong G$, using cohomology. Start with a split extension \hat{G} acts on the subgps complementary to A by conjugation. up to conjugacy.

Fix an action of G on A.	$a(g,g_z) = (ag_1)g_z$	· · · · · · · · · · · · · · ·	here A is a right 6-undule.
	a = a tid. of G		
È is isomorphic to the	(a+a')g = ag + a'g	for a a'eA; 1,	g, g, g, € G.
Sebidirect product AXG = 7			G X A for left
$(a_{1}, g_{1})(a_{2}, g_{2}) = (a_{1}g_{1}+a_{2}, g_{1}g_{2})$	identify (0, 1)		action
Attoinative notation : $A \times G = \{ \begin{bmatrix} g & o \\ a & i \end{bmatrix} \}$	eeA, geG		Constanceste at A
$\begin{bmatrix} g_1 & 0 \\ a_1 & 1 \end{bmatrix} \begin{bmatrix} g_2 & 0 \\ a_2 & 1 \end{bmatrix} = \begin{bmatrix} g_1 & g_2 \\ a_2 & 1 \end{bmatrix}$	°]	· · · · · · · · · · · · · · · · · · ·	Complements of A in & are given by 1-cocycles.
$C^2 \leftarrow S' - C' \leftarrow S^{\circ} - C^{\circ} \leftarrow C'$		$A_{1}^{\prime\prime} (Sa)(g) = ag - a$	
How do we construct a sul Any such subgp H < AXG	legp of AXG complex	neutory to A ?	5 [9 0 7
Any such subgp H < AXG	has the form { (tg,	g) g∈ G } =	2 L tg 1 J gee
Here $g \xrightarrow{g} t_g$, $G \longrightarrow A$ as it is a subgp. eg. $t_i =$	This will automatically	le a complement	to A as long
$\begin{bmatrix} \mathbf{g} & \mathbf{o} \\ \mathbf{f}_{\mathbf{g}} & \mathbf{i} \end{bmatrix} \begin{bmatrix} \mathbf{g}' & \mathbf{o} \\ \mathbf{f}_{\mathbf{g}'} & \mathbf{i} \end{bmatrix} = \begin{bmatrix} \mathbf{g} & \mathbf{o} \\ \mathbf{f}_{\mathbf{g}'} & \mathbf{f} \end{bmatrix}$	i.e. t_{13} t_{13	g,g') = - f(gg') + f(g)g'+ -	f(g') = 0,

When are two complements of A conjugate in & ? G = ANG	
If A has complementary subgps H, Hz < G given by H = ? (f.(g), g) : g f G },	$f \in Z'(G; A)$
when are H, Hz anjugate in & ?	$(Sf_{i})(g_{i},g') = f_{i}(g') - f_{i}(gg') + f_{i}(gg')$ = 0
$\begin{bmatrix} g \\ a \\ i \end{bmatrix} = \begin{bmatrix} g \\ -ag' \\ i \end{bmatrix}$ $\begin{bmatrix} g \\ -ag' \\ i \end{bmatrix} = \begin{bmatrix} i \\ 0 \\ i \end{bmatrix}$ $U_{SR} \begin{bmatrix} g \\ i \end{bmatrix} \in \widehat{G} (a, g fixed) fo conjugate H_{i} :$	f(gxg') = f(g(xg')) $= f(g)xg' + f(xg')$ $= f(g)xg' + f(xg')$ $= f(g)xg' + f(xg') - f(g')$ $= f(g)xg' + f(xg')$
$\begin{bmatrix}g & 0\\ a & 1\end{bmatrix}\begin{bmatrix}g' & 0\\ -ag' & 1\end{bmatrix} = \begin{bmatrix}g & 0\\ ax+f(a) & 1\end{bmatrix}\begin{bmatrix}g' & 0\\ -ag' & 1\end{bmatrix} = \begin{bmatrix}g & g'' & 0\\ ax+f(a) & 1\end{bmatrix} = \begin{bmatrix}g & g'' & 0\\ -ag' & 1\end{bmatrix} = \begin{bmatrix}g & g' & 0\\ -a$	$= f'(g) \times g' + f'(x) g' - f'(g) g'$
$f_{2}(g \times g^{-1}) = q \times g^{-1} + f(\omega)g^{-1} - qg^{-1} = f(g) \times g^{-1} + f(\omega)g^{-1} - f(g)g^{-1}$	
$a_{x} + f_{1}(x) - a = f_{2}(g)x + f_{2}(x) - f_{2}(g)$ $f_{1}(x) - f_{1}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{2}(x) - f_{1}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{3}(x) - f_{1}(x) = (a - f_{2}(g))x - (a - f_{2}(g))$ $f_{3}(x) - f_{3}(x) = f_{3}(x) - f_{3}(x)$	fe C' ie. f: G→A f(xy)= f(x)y + f(y)
ie ag = a for all a c A, ge6) then & is a homo. G-7 A.	f(i) = f(i+1) = f(i)(i+1) + f(i) => $f(i) = 0$
Extensions of A by G conversional to elements of H'= Z'/B'. f E B' (1-aboundary) iff f(x) = ax-a = Ga)(x), Q = A. (principal crossed bouromorplicing)	0=f(1)=f(gg')=f(gg')+f(g') => $f(g')=-f(g)g''$
(inner derivations)	

Eq. Classify extensions of $C_q = \langle x : x^1 = 1 \rangle$ by $C_z = \langle y : y^2 = 1 \rangle$ $1 \longrightarrow C_q \longrightarrow \widehat{G} \longrightarrow C_z \longrightarrow 1$ Two cases depending on the action of C_z on C_q Case I: y inverts π i.e. $y\pi y' = x' = \pi^3$ (H') = 2 = how many complementary subaps of G up to conjugacy C_q has four complementary subaps in $\widehat{G} \cong$ diledral gp of order 8. $(y), \langle x^2y \rangle$ are conjugate to each other in $\widehat{G} \cong$ Not conjugate. $\langle xy, \langle x^2y \rangle$ are conjugate to each other in $\widehat{G} \ll$	$\begin{aligned} x &= (1234) \\ y &= (14)(23) \\ x^2y &= (12)(34) \\ xy &= (13) \\ x^3y &= (24) \end{aligned}$
Case II: y commutes with x. $xy = yx$ $\hat{\zeta} = \zeta_{x} \zeta_{z}$ (x) has two complements in $\hat{\zeta}$, namely $\langle y \rangle$, $\langle x^{2}y \rangle$. They are not conjugate.	
How many extensions $1 \rightarrow C_q \rightarrow \widehat{G} \rightarrow C_q \rightarrow 1$ are there up to equivalence, require the extension to be split? (Split \rightleftharpoons there is a complementary subgp for eq. C_g is a nonsplit extension of C_q by C_q . Case I: C_q acts trivially on C_q . Here there are two extensions: C_g and $C_q \times C_q$ (nonsplit) (caplit). Case II: C_q acts northrivially on C_q . Here there are two extensions: dihedral of orders, quatern (split).	if we don't () ion gp of only 8 nonsplit).

The Schur- Eassenhaus Theorem Given groups G, N with G acting N (the action of G on N is fixed) we consider exact sequences of groups 1 ---- N ---- G ---- 7 G i.e. extensions of N by G ie. groups & having a normal subgp isomorphic to N. IF INI, ICI are relatively prime them H'= 1 and H²=1. This says that the extension splits i.e. & has a subgp complementary to N and any two complements of N are conjugate in &. Note: We do not require N to be abelian. If N is abolian then the formulas are simpler. Even singler This generalizes Sylow theory; N and its complements are Hall subgps. $\mathbf{H} \in \mathcal{N} \subset \mathbb{Z}(G)$ (central extension of N by G) A loop is a set L with a binary operation (r, y) -> xy such that any two of x, y, xy caniquely determine the other. We also assume $\exists s \in L$ such that s = x = x for all $x \in L$ A Bol loop satisfies ((xy)z)y = x((yz)y) for all $x, y, z \in L$. A Hadamard métrix is an Ara matrix H with entries II such that HIHT = nI = HTH eg. H = [10] gives a (regular) double cover of Kag . A complex Hadamard nativix is an nxn matrix H with every estimes in S'= 920 (: 121=13 Such that HH+= nI= H*H

I classified complex Had matrixes with an auto on rows.	morphism group which is doubly fransitive
A proj. place has points and lines satisfying	
Any (n²+u+1) * (n²+u+1) matrix with 0/1 endries, u+1	only in any row/col, row · row = 1 = col·col
$n = The order of the planeIn all lemown cases, n = p^k, p prime, k \ge 1.$	
Some long exact sequences in homology	have the deformation retract of an
Some long exact sequences in homology Take a top. space X having a closed subspace open which in X. X/A : collapse ID X quotient space	A to a single point, leaving points outside A untouched.
Then we have a long exact sequence $\longrightarrow \widetilde{H}_{\mu}(A) \longrightarrow \widetilde{H}_{\mu}(X) \longrightarrow \widetilde{H}_{\mu}(X/A)$	$H_{n}(X) = \begin{cases} H_{n}(X) & \text{if } n \ge 1 \\ 0 & \text{if } n \ge 0 \end{cases}$
$\rightarrow \widetilde{H}_{n-1}(A) \longrightarrow \widetilde{H}_{n-1}(X) \rightarrow \widetilde{H}_{n-1}(X/A) \rightarrow \cdots$	$\rightarrow C_{n+1} \rightarrow C_n \rightarrow C_n \rightarrow \cdots \rightarrow C_0 \rightarrow 0$ has $H_n(X)$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	-> Cati -> Ca -> Ca -> Co -> Z -> O hos reduced homeology H _a (X).
ie. Min(S) = { 0 else A-	>X->X/A

Proof: Take $X = D^n = a-ball$ $(n \ge 1)$ $A = \partial X = S^{n-1}$ $X/A \cong S^n = one point compactification of <math>\mathbb{R}^n$ $H_{L}(D_{n}) = 0$ for $\rightarrow \tilde{H}_{k}(\underline{5}) \rightarrow \tilde$ $\Rightarrow \widetilde{H}_{k}(S^{*}) \cong \widetilde{H}_{k-1}(S^{*'}) \quad depands \quad only \quad on \quad k-n$ $\widetilde{H}_{k}(S) \cong \cdots \cong \widetilde{H}_{k}(S') \cong \mathbb{Z}$ $\widetilde{H}_{k}(S') = \begin{cases} \mathbb{Z} & \text{if } k=1 \\ 0 & \text{else} \end{cases}$ is assumed to be Homotopy groups The (X) "counts" ways to map S" -> X In X: (1) X: f(S") tube g(S") Cut holes & D" in f(S"), g(S") Identity demoit: and join using S"'x [0,1] (1) Elements of $T_n(X)$ are up to homotopy, $f_{\sigma}, f_{i}: S^n \to X$ are homotopic iff there exists $f: S^n \times [0,1] \to X$, $(x,t) \mapsto f_{i}(x)$

The group operation & associative. It's commutative for n>2.
to real 1 - the on a houston trans the Tr (V) ~ Tr (Y) for all n. (Not converse
If X, Y have the same which oppy give men $f_n(X) = abdianization of T_n(X).If T_n(X) = 1 for k < n and T_n(X) \neq 1, then H_n(X) = abdianization of T_n(X).(theorem of Harewicz)$
(theorem of Havewicz)
(Theorem of much hader to define then honology groups Homotopy groups are eagier to define then honology groups much hader to compute eg. (1,2) & P'C
$T_{n}(S^{k}) \text{ is not known in general} \qquad \qquad$
But some is known :
$ \pi_n(S^n) \cong \mathbb{Z} $
Tz (S2) = Z is due to the the fibration 1->S'->S'->S'->I
This means we have a map $f: S^3 \longrightarrow S^2$ which is surjective and all fibres are circles. In other words we can partition S^3 into circles. $S^3 = unit$ sphere in $\mathbb{R}^+ = unit$ sphere in \mathbb{H}^+ . $f(z,w) = \int_{-\infty}^{\infty} f(z,w) = \int_{-\infty}^{\infty} f(z,w$
$S^3 = unit sphere in R^{\dagger} = unit sphere in H.$ $S(1, \frac{w}{2}), if 2=0$
$S^{3} = \operatorname{unit} \operatorname{sphere} \operatorname{in} \mathbb{R}^{+} = \operatorname{unit} \operatorname{sphere} \operatorname{in} \mathbb{H}^{+}.$ = $\int (\overline{z}, w) \in \mathbb{C}^{2}$: $ \overline{z} ^{2} + w ^{2} = 1$ $f(\overline{z}, w) = \begin{cases} (1, \frac{w}{z}), & \text{if } \overline{z} \neq 0 \\ (0, 1), & \text{if } \overline{z} = 0 \end{cases}$ = $\mathbb{R}^{2} \operatorname{equation}$ = $\int (\overline{z}, w) \in \mathbb{C}^{2}$ = $\mathbb{R}^{2} \operatorname{equation}$ = $\int (\overline{z}, w) \in \mathbb{C}^{2}$: $ \overline{z} ^{2} + w ^{2} = 1$ $f(\overline{z}, w) = \begin{cases} (0, 1), & \text{if } \overline{z} = 0 \\ (0, 1), & \text{if } \overline{z} = 0 \end{cases}$ = $\mathbb{R}^{2} \operatorname{equation}$

 $1 \longrightarrow S^{\circ} \longrightarrow S' \longrightarrow S' \longrightarrow 1$ RCC -> S'-> S'×S'-> S'->1 trivialle $1 \rightarrow c' \rightarrow c^3 \rightarrow c^2 \rightarrow 1$ CCH han (global), nonvarishing HCO $1 \longrightarrow S^3 \longrightarrow S^7 \longrightarrow S^4 \longrightarrow I$ The Hopf fibration does not have such a gettion; it is a nontrivial fibe (B = base space) builde. at each point of B. OCS $1 \longrightarrow S^7 \longrightarrow S^6 \longrightarrow S^8 \longrightarrow 1$ A fibre bundle over B with fibres F is a way of continuously attaching a copy of F Trivial bundle : E= F×B Another way: eg. S' has more than one kind of line bundle (vector bundle over R of dimension 1) having fibre space F= R S $\mathbb{R} \longrightarrow \mathbb{E} \longrightarrow [S']$ A section of a fibre buille F-> E-> B Trivial bundle R -> S'XR -> S a right inverse for p iafinder ie. g: B-E Such that pog = idg. This fibre bundle is nontrivial because it has no nonvaristing global sections Nontrivial: R->E-> Möbius (intente)

For every filere bundle homotopy groups we have a long exact sequence of F->E->B $\longrightarrow \pi_{L}(F) \rightarrow \pi_{L}(E) \longrightarrow \pi_{L}(B) \longrightarrow \pi_{L}(F) \rightarrow$ A line kendle is a hundle with fibre space given by some field (mully R or A vector bundle has fibre space F" (eg. R", C",...) Sections of a vector bundle are the same thing as vector fields. A circle bundle has fibre space ≅ S'. A tangent bundle for a subtace MCR" M M has Elerop ≃ D"' Man n-1 - manifold) has fibres = R⁻¹ Eq. the normal line studie Eq. the tangent line bundle on S Which and is it (trivial or Möbius strip)? also frivial

Eg S ² C R ³ Targait bundle E	Is this build finial? No. The trivial builde S*X R* has a nonvanishing section
$R^2 \rightarrow E \rightarrow S^2$	$(s, v) \longrightarrow S^2$
$(s, v) = \frac{1}{2} \frac{dimil}{dimil} \frac{2 dimil}{dimil}$	$(s,v) \longrightarrow s \in S^2$
(5_{v})	sr S ^{2k}
Hairy Ball Theorem . The forgent bundle on	S2K Remark: If q: S2->S2
has no nonvanishing (global) section is a	S ² K S ⁵ Ken g induces a nep en Exorth H ₂ (S) = Z (take singular homology)
there is no nonvanishing verter field (eg.	wind) $H_2(S) \stackrel{\sim}{=} \mathbb{Z}(take singular homology)$
Hairy Ball Theorem. The tangent bundle on here no norwanishing (global) section is on there is no nonvanishing vector field. On the at any instant in time, any meeter field (eg much be zero at some point.	$\sigma T_{\Sigma}(S^{Z}) = Z$
Proof: Suppose of: S2-> E is a nonvanishing sec	tion, and a second second second of the second s
Proof: Suppose $g: S^2 \rightarrow E$ is a nonvanishing sec WLOG $g(s) = (s, v)$ ushere $ v = 1$. Such a map defines a bomotopy from ids: to the artipodal map	
defines a comotopy from de to me trapant p	
$f_1: S^2 \rightarrow S^2$, $0 \le t \le 1$	S'
$f_{1}(s) = f(s,t)$ $(s,t) \in S^{\times}[0,1]$	q E Hz (5t) induced by q
f (s) = s identity on S f (s) = -s (antipodel point on S ²)	g ₄ E H ₂ (5 ^t) induced by g has a well-defined degree of g
$f_t(s)$: shart at $s \in S^2$ and go to radiums on S^2 in the direction of $g(s)$.	IA .
t in the direction of g(s).	The identify S=>S' has degree 1. A constant may S=>S' has degree -1. the antipodd map S=>S' has degree -1.

If $H \leq G$ then $G/H = EgH : g \in G?$ set of left cosets a homogeneous space for G in the case where G is a top. g	of the in G. View this as a p. (Gasts transitively)
If HSG (normal subge) then G/H is actually a group.	μ
The general HSG gives a fibre bundle H -> 6 off	· · · · · · · · · · · · · · · · · · ·
In particules take $G = O_n(\mathbb{R}) = \{x \in n \text{ matrices } A \text{ over } \mathbb{R} \text{ such}$ H = stabilizer of (1,0,0,0) in G $= \{[0,0,0],0] \in \mathcal{D}(\mathbb{R})\} \stackrel{\circ}{=} O_n(\mathbb{R})$	$A^{T} = A^{T} = A^{T} A = 1$
11 - stabilizer of (100.0) or thegonal group	For $A \in O_{n}(\mathbb{R})$, det $A = \pm 1$
	SO, $(\mathbb{R}) = \{A \in O_n(\mathbb{R}) : A \in A = n \\ = \{rotations of \mathbb{R}^n \text{ about } 0\}$
$G_{\mu} \cong S^{n-1}$	
$O_{n-1} \longrightarrow O_n \longrightarrow S^{n-1}$ fibration	
$ \neg \pi_{k}(Q_{-}) \longrightarrow \pi_{k}(Q_{h}) \longrightarrow \pi_{k}(S^{n'}) \longrightarrow \pi_{k-1}(Q_{h-1}) \longrightarrow $	long exact sequence
The (On) are better understood than The (S")	
Special cases: $Q_2 \rightarrow Q_3 \rightarrow S^2$ SQ $\approx S^3/_{\{\pm\}}$	
$S_0 \rightarrow S_3 \rightarrow S^{-1}$ $S_0 \approx S^{-1}$	•
$S_{1} \rightarrow S_{1} \rightarrow S^{2}$	
	5 ³ /1±13 ~ 5 ³ , 2 5 ²
S' -> S' -> S' Hopf fibration	$\frac{S^{3}/[\pm 1]}{S^{1}/[\pm 1]} \cong \frac{S^{3}}{S^{1}} \cong S^{1}$
	· · · · · · · · · · · · · · · · · · ·

Stability of komotopy g	roups of spheres:	$\pi_{m}(S^{k}) = \pi_{k+k}(S^{k})$	is constant (inlep. Sufficiently	of k) if k is large
$T_{n}^{S}(S^{k}) = \lim_{k \to \infty} \pi_{n+k}(S^{k}) = \pi^{+k}$	stable homotopy gp	k = m 7 n Br spheres	· · · · · · · · · · ·	· · · · · · · · · ·
Similar For On: That	(O_k) has a limit a	a k->00 (const. fo	$r (e \gg \infty)$	· · · · · · · · · ·
Sincilar For Q_h : T_{n+1} given by $\begin{bmatrix} 2/2\\ 2/2\\ \hline 4/2\\ \hline 0\\ \hline 2\\ \end{bmatrix}$	$2 \text{if} n \equiv 0 \mod 8$ $2 \text{if} n \equiv 1 \mod 8$ $\text{if} n \equiv 2$	Bell Barlin	1. Theorem	
		Bott Boriadia		· · · · · · · · · ·
$O_{\infty} \ge \bigcup O_{n}$			· · · · · · · · · · ·	· · · · · · · · · · ·
I have a nice 28×28 If corresponds to a nice	complex Hadament wet	rix with actries co	upley 7th roots of	P mity.
Monodromy representations				
Let $X = C - \{0, 1\}$	For each hex conside	in the curve F_{1} : y^{2}	x(+)(+-))	$(x,y) \in \mathbb{C}^{2}$
$\pi(E_{\lambda}) \cong \mathbb{Z}^{\lambda}$	· · · · · · · · · · · · · ·		Ę,≃⊤	· · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	· · · · · · · · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · ·