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Cup product for simplicial cohomology Hx x He => +k+e
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let's talk about singular homology and cohomology.
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Suppose fi S"-> 8" is tipodal . (f(x) = = f(x))
f

ThenI induces a
well-de

an

PR -> p"R su D
, (PR) = /2fined

map U E
gn-1

C O

- G 8IX A -> o

(x+ S") f
*

maps a generator of

+, (PR) to a generator
- induces : **I; #2) -> *

(PR ; #2) mapping --> of +, (PR)
/ T

#(x)/(x ) #z(x)/(x**
I

x"- ***; contradiction .
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closed 2-manifolds i
.e, connected compact 2-manifolds without boundary are completely classified

using
Enter characteristic and orientability
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