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The Borsuk-Ulam Theorem
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Brouwer Fixed-Point Theorem

If f: B" —> B”"
then there exists
x € B" such that

f(x) = x.




The Ham Sandwich Theorem

G1ven n mass
distributions in R”,
there exists a
hyperplane dividing
each of the masses.

n=73
ham, cheese, bread



Every open necklace with n types of stones can
be divided between two thieves using no more
than » cuts.

There 1s a version for several thieves.



Every open necklace with n types of stones can
be divided between two thieves using no more
than » cuts.

All known proofs are topological



Tucker’s Lemma

Consider a triangulation
of B" with vertices labeled
+1, £2, ..., £n, such that
the labeling 1s antipodal
on the boundary. Then
there exists an edge (1-
simplex) whose endpoints
have opposite labels i,—i.
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Versions of the Borsuk-Ulam Theorem
(1) (Borsuk 1933) If f: 58" — R” is continuous then
there exists x € S” such that f(—x) = f(x).

(2) If /: 8" — R” 1s antipodal, 1.e. f(—x)=—f(x),
then there exists x € §” such that f(x) = 0.

(3) There is no antipodal map S* — S" 1,

(4) (Lyusternik-Schnirel’man 1930) It {4,,4,,...,4,.}
1s a closed cover of §”, then some 4, contains a pair of
antipodal points.

(5) generalizing (4), each A 1s either open or closed

(Henceforth all maps are continuous functions.)



(1) If /:8" — R 1s continuous then there exists
x € 8" such that f(—x) = f(x).
T
(2) If /: 8" — R”" 1s antipodal, 1.e. f(—x)=—f(x),
then there exists x € §” such that f(x) = 0.

Let f/: 5" — R” be antipodal.
There exists x € S” such that f(x) =f(—x) =—f(x). So f(x)=0.

Let f: 8" — R” and define g(x) = f(x) — f(— x).
Since g 1s antipodal, there exists x € S” such that g(x)=0.

So f(—x) = f(x).



(1) (Borsuk 1933) If f: 5" — R” is continuous then-
U there exists x € §” such that f(—x) = f(x).

(4) (Lyusternik-Schnirel’man 1930) It {4,,4,,...,4,.}
1s a closed cover of §”, then some 4, contains a pair of
antipodal points.

Define f: 8" — R”", x > (dist(x,4,), ..., dist(x, 4,)).
There exists x € " such that f(—x) = f(x) =y, say.
If =0 (i<n) then x,—x¢€ 4..

Otherwise x,—x € 4, ;.



Radon’s Theorem

Let n>1.

Every set of n+2 points in R”
can be partitioned as 4,U 4, such that

conv(4,) N conv(4,) # Q.



Radon’s Theorem

Let n>1.

Every set of n+2 points in R”
can be partitioned as 4,U 4, such that

conv(4,) N conv(4,) # Q.




Radon’s Theorem (Alternative Formulation)

Let ™! be an n+1-simplex where n>1 and let
f: 0™ — R” be affine linear.

There exist two complementary sub-simplices a,[3
of 6" such that fla) N AP) # D.

A
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Radon’s Theorem (Alternative Formulation)

Let ™! be an n+1-simplex where n>1 and let
f: 0™ — R” be affine linear.

There exist two complementary sub-simplices a,[3
of 6" such that fla) N AP) # D.




Topological Radon Theorem

Let ™! be an n+1-simplex where n>1 and let
£ 6" — R” be continuous.

There exist two complementary sub-simplices a,[3
of 6" such that fla) N AP) # D.




Topological Radon Theorem

Let ™! be an n+1-simplex where n>1 and let
76"l — R” be continuous.

There exist two complementary sub-simplices a,[3
of 6" such that fla) N AP) # D.

&




Tverberg’s Theorem

Let n>1, r>2.
Every set of nr+r—n points in R”
can be partitioned as 4,UA4,U ... U4,

such that
conv(4) N conv(A4,) N ... N conv(4,) £ D.

n=2, r=3



Tverberg’s Theorem

Let n>1, r>2.
Every set of nr+r—n points in R”
can be partitioned as 4,UA4,U ... U4,

such that
conv(4) N conv(A4,) N ... N conv(4,) £ D.

This generalization of Radon’s Theorem
also has a valid topological version.

n=2, r=3



Lovasz-Kneser Theorem
Kneser Graph KG,, ; has (Z) vertices
AC{1,2,...,n}, |A|=k.

Here 1<k < (nt+1)/2.
Vertices A,B are adjacent iff ANB = A. / \
AN AN
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Lovasz-Kneser Theorem
Kneser Graph KG,, ; has (Z) vertices
AC{1,2,...,n}, |A| =k
Here 1< k < (n+1)/2. °
Vertices 4,B are adjacent iff ANB = O.

12

@35
. A
Kneser Conjecture (1955) 56— o o — *
X(K Gn’ k) = n—2k+2.
Proved by Lovasz (1978) using the
Borsuk-Ulam Theorem. 144 24
The fractional chromatic number 23 ‘/ \‘ 15

gives the very weak lower bound
XKG, ) = nk. WKGs,) =3



Lovasz-Kneser Theorem
Kneser Graph KG,, ; has (Z) vertices
AC{1,2,...,n}, |A| =k
Here 1<k < (nt+1)/2.
Vertices 4,B are adjacent iff ANB = O.

A proper colouring of KG,, , with colours 1,2,...,n—2k+2:

A is coloured: min AN{1,2,...,n—2k+1}, if this intersection is nonempty;
n—2k+2 otherwise, 1.e. 4 C {n—2k+2, ..., n}.



Proof of Lovasz-Kneser Theorem

Vertices of KG,, ;: k-subsets of an n-set X C S9, d = n-2k+1.

WLOG points of X are in general position (no d+1 points on any
hyperplane through 0).

Each x € $¢ gives a partition R = H(x) U x+ U H(x).

Suppose there is a proper colouring of (i{( ) using colours 1,2,....d.

Define the point sets 4, 4,, ..., 4; C 54

A;1s the set of all x € S9 for which some k-set B C H(x) has colour i.
Ay =8"— (4, U4, U ... UA).

Ay, A,, ..., A, are open; A4, 1s closed.

So some A; contains a pair of antipodal points x,—x.

Case i <d:. we get k-tuples 4 C H(x), BC H(—x) of colour i. No!
Case i=d+1: H(x) contains at most k—1 points of X. So does H(—x).
So x* contains at least n—2(k—1)=d+1 points of X. No!



Similar techniques yield lower
bounds for chromatic numbers
for more general graphs using

Z,-1ndices ...



Sequence of spheres §" = {(xg,xy,....X,) € R7HL inz =1}

— — —>
e
S0 S! 52 S3 S4

Antipodal maps S"—S""!  ie. fimx) =—Ax)
but S" 18"



0 0, 1
(50 (51
10,1}
10}
0F
U
U

The n-simplex "

A

62

{0,1,2}
0,1} {02} {1,2}
13

10} ;42

¥

2
°1
5o
0123
012 013 023 123
01 o062 12 03 13 23

U



Its geometric realization ||c”|| C R”

.2
.O O. .1 .2
|| o]
50 - 52 G-
0123
{0,1,2}
10,13} 012 013 023 123
0} 0,11 (0.2} (1.2}
{0} {1} 01 02 12 03 13 23
{} 0y 13y {23
0 o 1 2 3
The n-simplex o” . ’



A Simplicial Complex

e.g.
|K|| = geometric realization of K K

3 {1,2,3}
{0,1} {1,2} {1,3} {2,3}
1 "2 0y {1y {2y {3

U



Skeletons  e.g K=o

K K=
{0,1,2} = the 1-skeleton of K K =0
= the 0-skeleton of K
0,1} {02} {1,2} {0,1}  {0,2} {1,2}
oy {1} 0y {1} {2} {0y {1} {2}
0 U U
o2 2
IK=1| = IK=°l| =




o = B%,

e.g.

[(e™)=""=8"",  [I(6") =] =K,y

(@<= = K=

0. ol



Topological join S  §™ = S+l

W O R
sO s S!

. . /-
SO * Sl — S2 & - & B -
v s S2

In particular §" = (§9)* "1 = g0 % g0 g0



Join

(Gl)*Z _ Gl o (51 _

More generally, (¢)"%=o?"" ||(c")*?| = B2,

Deleted Join
[CoE 2 T
(51 Gl

More generally, ||(G”)Zz|| = "



Z,-action on a topological space X:

a homeomorphism X — X, x +— x" such that (x")"=x
(not necessarily fixed-point-free). Denote —x = x’.

§" and R" have natural Z,-actions.
The first 1s free, the second 1s not.

Let X and Y be topological Z,-spaces. Write

X—Y
if there exists a Z,-equivariant map f: X — Y, 1e. fl-x) = —f(x).
If not, write X —» Y.

Thus S"—S"H1 srtl_,gn,

If X—>Y and Y — W, then X— W.
So ‘—’ defines a partial order.



Z,-1ndex and coindex of X:

ind,(X) = smallest n such that X — S";
coind,(X) = largest n such that §" — X.

Properties:

If ind,(X)>1nd,(Y) then X —» Y.

coind,(X) < 1nd,(X)

ind,(S") = coind,(S8") = n

ind,(X*Y) <1ind,(X) + ind,(Y) + 1

If X1is n—1-connected then ind,(X) > n.

If X1is a free simplicial Z,-complex (or cell Z,-complex)
of dimension #n, then ind,(X) <n.



The Box Complex B(I') of a Graph T’

2

() =3

IBO)| = [0,1]x S

Og o
®
_ 1
1 gL 0 L
o 0
O 2’
2’
0® ° l
1’
e @ o2

ind, (| BI)]) = 1

(1) = nd,(||BI)]]) + 2



The Box Complex B(I') of a Graph T’

B(I') 1s the set of all pairs (4,B), 4,B C V(1)

such that every member of 4 is adjacent to every member of B.

We allow A=0, but in this case we require that B has a

nonempty set of common neighbours.

Similarly if B =, we require that A has a nonempty set of
common neighbours.



Nonembeddability of Deleted Join

Let K be a simplicial complex. If
ind,(|[K][:2) >
then for every f: ||K|| — R”, there exist two disjoint faces of K

whose 1images in R” intersect.
In particular, ||K]| 1s not embeddable in R”.

Special case: the Topological Radon Theorem.

Another special case: K=K;5= . . = {} * {}

ind,( ||K][}*) =3 so Kj 3 is nonplanar (i.e. nonembeddable in R?).

Another special case: P?R is not embeddable in R3.



Van Kampen-Flores Theorem

Let K =(0?""?)=" where n>1 (the n-skeleton of a 2n+2-simplex).
Then ||K]| is not embeddable in R>".

Moreover:

For every map f: ||[K|| — R?”?, there exist two disjoint faces a,f
of ||K]|| such that f{a) N AP) # OD.

Case n=1: K=(cH=! = K5 1s not embeddable in R2.



Replace Z, by a (finite) group G

G acts freely on G (a discrete topological space with |G| points).
Replace S = (§9)""*D) py "0+

Consider topological spaces with G-action (not necessarily free).

Write X — Y 1if there exists a G-equivariant map f: X — V.

ind;(X) = largestn suchthat X — G
coind;(X) = smallest » such that Gt x

Usually take G = Z, (cyclic of order p).

This gives a proof of the Topological Tverberg Theorem
(generalizing the proof of the Topological Radon Theorem).



Proof of the Borsuk-Ulam Theorem

Suppose f: 8" — S, fiex) =—f(x). Then finduces maps
P'R — PR
n,(P"R) — m,(P"'R)

2| 2|
Z, = Z,

H*(P" 'R, F,) — H*(P'R, IF,)
| |
F,[X)/(X") — F,[X]/(X"*)
X — X,

a contradiction.



“Flat Earth”

e ey R—

woodcut, 1888 (Flammarion)



