
Cohomology

1. Graded Rings

Denote by A = F [X1, X2, . . . , Xn] the ring of polynomials in n indeterminates X1, X2, . . . ,

Xn with coefficients in F . This is in fact an algebra over F (a ring which is also a vector

space over F ). As a vector space we have a direct sum decomposition

A =
⊕
k≥0

Ak

where Ak is the subspace consisting of all homogeneous polynomials of degree k. A basis

for Ak is given by the monomials of degree k:

Xi1
1 X

i2
2 · · ·Xin

n where i1, i2, . . . , in ≥ 0, i1+i2+ · · ·+in = k.

In particular the dimension of Ak is the number of such monomials, namely
(
n−1+k

k

)
. We

have

AkA` ⊆ Ak+` ,

i.e. the product of homogeneous polynomials of degree k and ` is a homogeneous polynomial

of degree k+`. Thus A is an example of a graded ring (in this case a graded algebra). More

generally a ring A is said to be graded if we have a direct sum decomposition A =
⊕

k≥0Ak
where the Ak’s are additive subgroups satisfying AkA` ⊆ Ak+`.

Another example of a graded ring is the quotient ring F [X]/(Xn+1); thus for example

F [X]/(X3) has elements a0 +a1X+a2X
2 [actually a0 +a1X+a2X

2 +(X3) but we simply

denote this coset by its unique representative of smallest degree] and multiplication defined

by

(a0 + a1X + a2X
2)(b0 + b1X + b2X

2) = a0b0 + (a0b1+a1b0)X + (a0b2+a1b1+a2b0)X2.

In this case the ring A = A0 ⊕A1 ⊕A2 is three-dimensional, with each homogeneous part

A0, A1, A2 of dimension 1, and Ak = 0 for k /∈ {0, 1, 2}. We will see that the cohomology

ring of the real projective plane with coefficients in the field F2 of order two, is of this

form:

H∗(P 2R;F2) ∼= F2[X]/(X3).

1



2. Exterior Algebra

Let V be an n-dimensional vector space over a field F . The k-th exterior power of V is

defined as ∧k
V =

(⊗k
V
)
/S

where
⊗k

V = V ⊗V ⊗· · ·⊗V (the k-th tensor power of V ) and S is the subspace spanned

by all pure tensors of the form v1 ⊗ v2 ⊗ · · · ⊗ vk such that vi = vj for some i 6= j. We

denote the image of a typical pure tensor v1 ⊗ · · · ⊗ vk ∈
⊗k

V by

v1 ∧ · · · ∧ vk = (v1⊗ · · ·⊗vk) + S ∈
∧k
V.

Let 1 ≤ i < j ≤ k and denote

f(vi, vj) = v1 ∧ · · · ∧ vi ∧ · · · ∧ vj ∧ · · · ∧ vn

where the vectors v1, . . . , vi−1, vi+1, . . . , vj−1, vj+1, . . . , vk ∈ V are fixed. Using the bilin-

earity of the wedge product we obtain

0 = f(vi+vj , vi+vj)− f(vi, vi)− f(vj , vj)

= f(vi, vj) + f(vj , vi).

Thus the expression v1 ∧ · · · ∧ vk reverses in sign whenever two of the vectors v1, . . . , vk

are interchanged. It follows that more generally for any permutation σ ∈ Sk we have

vσ(1) ∧ vσ(2) ∧ · · · ∧ vσ(k) = sgn(σ)(v1 ∧ v2 ∧ · · · ∧ vk) .

If {e1, e2, . . . , en} is a basis for V then a basis for
∧k

V is formed by the
(
n
k

)
expressions

ei1 ∧ei2 ∧· · ·∧eik where 1 ≤ i1 < i2 < · · · < ik ≤ n. In particular the dimension of
∧k

V is(
n
k

)
. In particular

∧k
V = 0 whenever k > n, and

∧n
V is 1-dimensional with single basis

vector e1∧e2∧· · ·∧en . Note that the wedge product of n arbitrary vectors v1, . . . , vn ∈ V
is given by

v1 ∧ v2 ∧ · · · ∧ vn = (detM) e1 ∧ e2 ∧ · · · ∧ en

where M is the n×n matrix over F with columns formed by the coordinates of v1, . . . , vn

with respect to the basis e1, . . . , en.

The exterior algebra of V is the graded algebra

∧∗
V =

⊕
k≥0

∧k
V
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with respect to the wedge product. (Note that
⊗0

V =
∧0

V = F .) For example when

n = 2, elements of
∧∗
V have the form a0 + a1e1 + a2e2 + a3e1∧e2 where ai ∈ F , and the

product becomes

(a0 + a1e1 + a2e2 + a3e1∧e2) ∧ (b0 + b1e1 + b2e2 + b3e1∧e2)

= a0b0 + (a0b1+a1b0)e1 + (a0b2+a2b0)e2 + (a0b3+a3b0+a1b2−a2b1)e1∧e2.

Note that in general the exterior algebra has dimension

dim(
∧∗
V ) =

∑
k≥0

(
n

k

)
= 2n.

3. De Rham Cohomology

As our first example of cohomology rings we consider the de Rham cohomology ring of an

open region X ⊆ Rn. This is a graded ring of the form

H∗de Rham(X) =
⊕
k≥0

Hk
de Rham(X)

where Hk
de Rham(X) denotes the k-th de Rham cohomology group of X. The de Rham

cohomology groups for nice spaces X ⊂ Rn turn out to agree with the simplicial and

singular cohomology groups Hk(X;R) with real coefficients. We will certainly not prove

this but this fact may be observed in our examples.

In order to define these groups we first consider the ring R consisting of smooth real-

valued functions defined on X. (Without worrying too much about what ‘smooth’ means,

let us say that f ∈ R means that f : X → R is infinitely differentiable, and in particular

f has continuous partial derivatives of all orders.) Now for each k ≥ 0, consider the real

vector space Ck = Ck(X) spanned by expressions of the form

f(x1, . . . , xn) dxi1 ∧ dxi2 ∧ · · · ∧ dxik

where 1 ≤ i1 < i2 < · · · < ik ≤ n and f is a smooth function X → R. Thus C1 consists of

expressions of the form

f1(x)dx1 + f2(x)dx2 + · · ·+ fn(x)dxn

where f1(x), . . . , fn(x) are smooth functions of x = (x1, . . . , xn) ∈ X. Also by convention

C0 = R consists of smooth functions. We refer to elements of Ck as (alternating) differen-

tial k-forms, or simply k-forms. Although Ck is infinite-dimensional as a real vector space

(at least for k = 0, 1, 2, . . . , n), it has finite rank
(
n
k

)
as a free module over the ring R.
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We define the differential of a smooth function f : X → R by

df =
∂f

∂x1
dx1 +

∂f

∂x2
dx2 + · · ·+ ∂f

∂xn
dxn ∈ C1(X).

More generally the differential operator d : Ck → Ck+1 is the real linear map defined by

d(f(x) dxi1 ∧ · · · dxik) = df ∧ dxi1 ∧ · · · dxik
with df defined as above. With this notation one can state Stoke’s Theorem: Given a

k-dimensional subset A ⊆ Rn and a (k−1)-form ω, we have∫
∂A

ω =

∫
A

dω.

Here ∂A denotes the boundary of A, which is (k−1)-dimensional; and ∂A has the ap-

propriate orientation induced by A. Note that one integrates the k-form dω over the

k-dimensional subset A; and the (k−1)-form ω over the (k−1)-dimensional subset ∂A.

3.1 Lemma. d2 = 0.

Proof. We consider a differential k-form ω = f(x) dxi1 ∧ · · · ∧ dxik . (The most general

k-form is a linear combination of expressions of this type.) Then

dω = df ∧ dxi1 ∧ · · · ∧ dxik

=
∑

1≤j≤n

∂f

∂xj
dxj ∧ dxi1 ∧ · · · ∧ dxik ;

d2ω =
∑

1≤i≤n

∑
1≤j≤n

∂2f

∂xi ∂xj
dxi ∧ dxj ∧ dxi1 ∧ · · · ∧ dxik = 0

since the terms with i and j interchanged cancel each other.

The k-th de Rham cohomology group of X is the quotient group

Hk
de Rham(X) = Zk/Bk

where Zk denotes the kernel of d : Ck → Ck+1 (the group of closed k-forms) and Bk = Bk

denotes the image of d : Ck−1 → Ck (the group of exact k-forms). Note that every

exact form is closed; and if the converse fails, then the degree to which closed forms

may fail to be exact, is measured by the cohomology groups of X. These groups depend

only on topological properties of X which may be thought of as higher dimensional ver-

sions of connectedness. For example H0
de Rham(X) = 0 iff X is connected, and in general

H0
de Rham(X) ∼= Rm−1 where m is the number of path-connected components of X. Also if

X is path-connected, then H1
de Rham(X) = 0 iff X is simply connected, and in general we

view H1
de Rham(X) as counting the number of ‘holes’ in X.

Compare the following with Lemma 3.6 (page 206) and Theorem 3.14 (page 215) in

the textbook.
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3.2 Lemma. If ω ∈ Ck and ρ ∈ C` then
(a) d(ω ∧ ρ) = dω ∧ ρ+ (−1)kω ∧ dρ;
(b) ρ ∧ ω = (−1)k`ω ∧ ρ.

Proof. Suppose ω = f(x) dxi1 ∧ · · · ∧ dxik and ρ = g(x) dxj1 ∧ · · · ∧ dxj` . (Recall that

general choices of k-form and `-form will be linear combinations of such expressions.) Then

d(ω ∧ ρ) = d(f(x)g(x)dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj`)

=
∑

1≤i≤n

( ∂f
∂xi

g(x) + f(x)
∂g

∂xi

)
dxi ∧ dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj`

=

[ ∑
1≤i≤n

∂f

∂xi
dxi ∧ dxi1 ∧ · · · ∧ dxik

]
∧ g(x) dxj1 ∧ · · · ∧ dxj`

+ (−1)kf(x)dxi1 ∧ · · · ∧ dxik ∧
[ ∑
1≤i≤n

∂g

∂xi
dxi ∧ dxj1 ∧ · · · ∧ dxj`

]
= dω ∧ ρ+ (−1)kω ∧ dρ.

Note that (−1)k appears as the sign of the cyclic permutation of the first k+1 differentials.

This proves (a). Now

ρ ∧ ω = f(x)g(x) dxj1 ∧ · · · ∧ dxj` ∧ dxi1 ∧ · · · ∧ dxik
= (−1)k`f(x)g(x) dxi1 ∧ · · · ∧ dxik ∧ dxj1 ∧ · · · ∧ dxj`
= (−1)k`ω ∧ ρ.

To understand the appearance of the factor (−1)k`, denote by σ a cyclic shift of all k+`

differentials appearing above, so that sgn(σ) = (−1)k+`+1. The permutation of differen-

tials appearing in the identity above is actually σk (or σ`, depending on whether you cycle

to the left or to the right) and we have sgn(σk) = (−1)(k+`+1)k = (−1)k`+k(k+1) = (−1)k`

since k(k+1) is even.

A consequence of Lemma 3.2(a) is that the wedge product for differential forms gives

a well-defined product on cohomology classes

Hk
de Rham(X)×H`

de Rham(X)
∧−→ Hk+`

de Rham(X).

In order to show that this operation is well-defined, we must show that if either of the

forms ω or ρ is exact, then the wedge product ω ∧ ρ is exact (and so represents the zero

element of Hk+`
de Rham(X)). To see this, note that if ω ∈ Bk, say ω = dψ where ψ ∈ Ck−1,

and ρ ∈ Z`, then

ω ∧ ρ = dψ ∧ ρ = d(ψ ∧ ρ)− (−1)kψ ∧ dρ = d(ψ ∧ ρ) ∈ Bk+`
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since dρ = 0. A similar argument (or an application of Lemma 3.2(b)) gives the same

result for ω ∈ Zk and ρ ∈ B`. Now the wedge product makes

H∗de Rham(X) =
⊕
k≥0

Hk
de Rham(X)

into a ring, and hence an algebra over R.

3.3 Example: Plane Regions

Consider a connected open plane region X ⊆ R2 with k ‘holes’. Let (xi, yi) ∈ R2 (i =

1, 2, . . . , k) be points in the corresponding holes, and let γi : [0, 1] → R2 be closed paths

such that γi winds once around (xi, yi) in the counterclockwise direction, but not around

the other points (xj , yj) for j 6= i. Shown is the case k = 3:

In this case we have H0
de Rham(X) ∼= R because X is connected. A basis for H0

de Rham(X) is

given by the constant function 1. This is because every closed 0-form is a smooth function

f : X → R satisfying df = 0 and so f is constant. Also H1
de Rham(X) is k-dimensional with

basis {ω1+B0, . . . , ωk+B0} where

ωi =
1

2π

(x−xi)dy − (y−yi)dx
(x−xi)2 + (y−yi)2

, i = 1, 2, . . . , k

and B0 is the collection of exact forms df = (∂f/∂x)dx+ (∂f/∂y)dy where f : X → R is

smooth. Thus every closed 1-form on X is expressible as

ω = a1ω1 + a2ω2 + · · ·+ akωk + df

for some a1, . . . , ak ∈ R and f : X → R smooth. Moreover this expression is unique up to

an additive constant term in f .

Recall that the first homology group H1(X;R) of X is a k-dimensional real vector

space with basis γ1, . . . , γk. (The set X deformation retracts to a wedge product of k
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circles, so the fundamental group π1(X) is a free group on k generators.) We observe that

Hk
de Rham(X) is naturally dual to Hk(X;R) in this case. Every closed 1-form ω gives rise to

a linear functional

Hk(X;R)→ R,
∑

1≤i≤k

aiγi 7→
∑

1≤i≤k

ai

∫
γi

ω.

The latter integrals are well-defined on cosets of B0 since by the Fundamental Theorem of

Calculus, every exact form df integrates to 0 over closed paths. Thus we have a natural

isomorphism

H1
de Rham(X) ∼= H1(X;R)∗ ∼= H1(X;R).

Note that the 1-forms ω1, . . . , ωk give a basis of H1
de Rham(X) which is dual to the basis

γ1, . . . , γk of H1(X;R).

4. Cohomology of Simplicial Complexes

Let X be a topological space. As in the definition of singular homology, we consider a

k-simplex [v0, v1, . . . , vk] ⊂ Rk with vertices v0, v1, . . . , vk and let

σ : [v0, v1, . . . , vk]→ X

be any continuous map. (Note that σ is not required to be injective.) A singular k-chain

in X, with coefficients in R, is defined to be a formal R-linear combination of such maps

[v0, v1, . . . , vk]→ X. We denote by Ck(X;R) the set of such k-chains. The boundary of σ

is the (k−1)-chain ∂σ ∈ Ck−1(X;R) defined by

∂σ = σ|[v1, v2, v3, . . . , vk]− σ|[v0, v2, v3, . . . , vk] + σ|[v0, v1, v3, . . . , vk]− · · ·
+ (−1)kσ|[v0, v1, v2, . . . , vk−1] ∈ Ck−1(X;R)

where each summand denotes the restriction of the map σ to the indicated (k−1)-dimen-

sional face of the simplex [v0, v1, . . . , vk]. (We may then rewrite each term in this sum as a

continuous map from the standard (k−1)-simplex [v0, v1, . . . , vk−1] ⊂ Rk−1 to X.) Using

linearity this extends to an R-linear map Ck(X;R) → Ck−1(X;R). The chain complex

associated to X with coefficients in R is the sequence of R-modules

· · · ∂−→ C2
∂−→ C1

∂−→ C0 −→ 0

where we abbreviate Ck = Ck(X;R). The k-th homology group of X with coefficients in

R is the quotient group

Hk(X;R) = Zk(X;R)/Bk(X;R)

7



where Zk(X;R) is the kernel of ∂ : Ck(X;R) → Ck−1(X;R) (the group of k-cycles)

and Bk(X;R) is the image of ∂ : Ck+1(X;R) → Ck(X;R) (the group of k-boundaries).

Dualizing the above chain complex gives the cochain complex

· · · δ←− C∗2
δ←− C∗1

δ←− C∗0 ←− 0

where C∗k = HomR(Ck, R) is the group of all R-module homomorphisms Ck → R and

the map δ = ∂∗ : C∗k → C∗k+1 is the dual of ∂ : Ck+1 → Ck. Elements of C∗k are called

k-cochains. (Recall: a matrix for δ = ∂∗ is obtained simply as the transpose of a matrix

for ∂.) Also δ2 = ∂∗ ◦ ∂∗ = (∂ ◦ ∂)∗ = 0∗ = 0. We define the k-th cohomology group with

coefficients in R as the quotient group

Hk(X;R) = Zk(X;R)/Bk(X;R)

where Zk = Zk(X;R) is the kernel of δ : C∗k → C∗k+1 (the group of k-cocycles) and

Bk = Bk(X;R) is the image of δ : C∗k−1 → C∗k (the group of k-coboundaries).

The cup product of φ ∈ C∗k and ψ ∈ C∗` is the (k+`)-cochain φ ∪ ψ ∈ C∗k+` defined as

follows for a typical continuous map σ : [v0, v1, . . . , vk+`] → X where [v0, v1, . . . , vk+`] ⊂
Rk+` is a (k+`)-simplex:

(φ ∪ ψ)(σ) = φ(σ|[v0, . . . , vk])ψ(σ|[vk, . . . , vk+`]).

As in Section 3 we obtain

δ(φ ∪ ψ) = δφ ∪ ψ + (−1)kφ ∪ δψ;

ψ ∪ φ = (−1)k`φ ∪ ψ.

It follows (as in Section 3) that the cup product gives a well-defined bilinear map (a

‘product’ operation)

Hk(X;R)×H`(X;R)
∪−→ Hk+`(X;R).

Thus we may define the cohomology ring of X with coefficients in R as the graded ring

H∗(X;R) =
⊕
k≥0

Hk(X;R).

5. Example: The Real Projective Plane

As before we use the following triangulation of the real projective plane X = P 2R:

•

•

•

•

....................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.

A B

AB

e e

f

f

g.......
........
...........

.............................................................................

α
.......................... ............... .....................................................................................

........
.......
...β ......
....................
...............

.....................

...............
.............
........
.......
........

..................... ............... ..................... ...............

........................................................................

...................
...............

...................
...............
...................
...............
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We compute homology and cohomology groups with coefficients in F2, so that −1 = 1. This

will simplify some of our matrices, so that the orientation of edges and triangles becomes

irrelevant; however we must still be careful with labeling of vertices when defining the cup

product. The corresponding chain complex is given by the following sequence, in which

explicit matrices for the boundary operator ∂ are given relative to the indicated bases for

the chain groups:



〈α, β〉 〈e, f, g〉 〈A,B〉

[
1
1

1
1

0
0

][
1
1

1
1

]
1 1

kernel:

Z2 =
〈[

1
1

]〉
image:

B1 =
〈[

1
1
1

]〉
kernel:

Z1 =
〈[

1
1
0

]
,
[
0
0
1

]〉
image:

B0 =
〈[

1
1

]〉
Now select dual bases for the cochain groups. For example the basis {φA, φB} of C∗0 dual

to the basis {A,B} of C0 is defined by

φA(xA+ yB) = x, φB(xA+ yB) = y

for all x, y ∈ F2. The resulting cochain complex, in which explicit matrices are given for

the coboundary operator δ relative to the chosen bases of the cochain groups, is given by

0 C∗2 C∗1 C∗

〈φα, φβ〉 〈φe, φf , φg〉 〈φA, φB〉

[
1
1

1
1

1
1

] [
1
1

1
1

]
0 0

kernel:

Z0 =
〈[

1
1

]〉
image:

B1 =
〈[

1
1
0

]〉
kernel:

Z1 =
〈[

1
1
0

]
,
[
1
0
1

]〉
image:

B2 =
〈[

1
1

]〉
The resulting homology and cohomology groups are all one-dimensional over F2:

H0 = Z0/B0 = 〈A+B0〉, H0 = Z0/B0 = 〈φA+φB〉,
H1 = Z1/B1 = 〈g+B1〉, H1 = Z1/B1 = 〈φe+φg+B1〉,
H2 = Z2/B2 = 〈α+β〉, H2 = Z2/B2 = 〈φα+B2〉.
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It is now straightforward to verify that the cohomology ring H∗(X;F2) is isomorphic to

F2[X]/(X3) as claimed in Section 1. The least trivial part of this calculation is to check that

the cup product of a generator of H1(X;F2) with itself yields a generator of H2(X;F2),

i.e. that

(φe+φg) ∪ (φe+φg) = φα .

This means that the element (φe+φg)∪(φe+φg) : H2(X;F2)→ F2 maps the nontrivial ele-

ment α+β ∈ H2(X;F2) to 1 (rather than to 0). We verify this by the following calculation.

First consider a 3-simplex [v0, v1, v2, v3] ⊂ R3 and maps implied by the diagram

•

•

•

•

....................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.

v0 v1

v2v3

−→

•

•

•

•

....................................................................................................................
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......
.......................................................................................................................................................................................................................................

.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.........
.

A B

AB

e e

f

f

gα

β

Thus for example α : [v0, v2, v3]→ X is a continuous map sending vertices v0, v2 7→ A, v3 7→
B; and sending edges [v0, v2] 7→ g, [v0, v3] 7→ e, [v2, v3] 7→ f . Similarly β : [v0, v1, v2]→ X.

Then

[(φe + φg) ∪ (φe + φg)](α+ β)

= (φe + φg)(α|[v0, v2] + β|[v0, v1]) · (φe + φg)(α|[v2, v3] + β|[v1, v2])

= (φe + φg)(g + f) · (φe + φg)(f + e)

= 1 · 1 = 1

as required. More generally we have

H∗(PnR;F2) ∼= F2[X]/(Xn+1)

and this fact leads very directly to a proof of the Borsuk-Ulam Theorem.

6. Universal Coefficient Theorem

We have seen a universal coefficient theorem for homology which indicates how to obtain

the homology groups Hk(X;R) of a space X with coefficients in a commutative ring R,

directly from the homology groups Hk(X) = Hk(X;Z) with integer coefficients. Here we

indicate how the cohomology groups Hk(X;R) may be similarly obtained from Hk(X).

The theorem makes use of the group Ext(H,G) defined for additive abelian groups G and

H. This group is fully defined in Chapter 3 of the textbook, but for our present purposes
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one does not require the full definition of Ext(H,G); in the case H is a finitely generated

abelian group one can determine Ext(H,G) rather quickly using the rules

Ext(H1 ⊕H2, G) ∼= Ext(H1, G)⊕ Ext(H2, G);

Ext(H,G) = 0 whenever H is a free Z-module;

Ext(Z/nZ, G) ∼= G/nG.

The definition of Ext(H,G) is rather similar to (actually dual to) the definition of Tor(A,

B) encountered earlier, but beware: Ext(G,H) is not generally isomorphic to Ext(H,G)

(in contrast with the identity Tor(B,A) ∼= Tor(A,B)).

6.1 Universal Coefficient Theorem for Cohomology. There is a split exact sequence

0 −→ Ext(Hk−1(X), R) −→ Hk(X;R) −→ Hom(Hk(X), R) −→ 0.
In particular

Hk(X;R) ∼= Ext(Hk−1(X), R)⊕Hom(Hk(X), R)
although in general there is no canonical choice of subgroup (isomorphic toHom(Hk(X), R))

complementary to Ext(Hk−1(X), R).

6.2 Example: The Real Projective Plane

Let X = P 2R. We make use of the previously computed homology groups

H0(X) = H0(X;Z) ∼= Z;

H1(X) = H1(X;Z) ∼= Z/2Z ∼= F2;

H2(X) = H2(X;Z) = 0.

From this we obtain the cohomology groups of X with integer coefficients:

H0(X) ∼= 0⊕Hom(Z,Z) ∼= Z;

H1(X) ∼= Ext(Z,Z)⊕Hom(F2,Z) = 0;

H2(X) ∼= Ext(Z/2Z,Z)⊕ 0 ∼= Z/2Z ∼= F2 .

And we obtain the cohomology groups of X with coefficients in F2:

H0(X;F2) ∼= 0⊕Hom(Z,F2) ∼= F2 ;

H1(X;F2) ∼= Ext(Z,F2)⊕Hom(F2,F2) ∼= F2 ⊕ 0 = F2;

H2(X;F2) ∼= Ext(Z/2Z,F2)⊕ 0 ∼= F2/2F2
∼= F2 .

In this example we observe

Hk(X) ∼=
(

free part

of Hk(X)

)
⊕
(

torsion part

of Hk−1(X)

)
which holds generally as a consequence of Theorem 6.1. Another general fact reflected in

this example is that when F is a field, we have the isomorphism

Hk(X;F ) ∼= Hk(X;F ),

although not canonically; there is however a natural isomorphism

Hk(X;F ) ∼= Hk(X;F )∗ = HomF (Hk(X,F ), F ).
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