
Appendix: Zorn’s Lemma

At a couple points during the course we have benefited from Zorn’s Lemma. Here we
outline the statement of Zorn’s Lemma and give an example of its use.

Let S be a set. A partial order on S is a binary relation ≤ such that for all x, y, z ∈ S,
(i) x ≤ x;
(ii) if x ≤ y and y ≤ x, then x = y; and
(iii) if x ≤ y and y ≤ z, then x ≤ z.

Note that there can be many pairs of elements {x, y} in X which are incomparable, i.e.
x #≤ y and y #≤ x. A chain is a subset C ⊆ x such that for all x, y ∈ S, either x ≤ y
or y ≤ x. We write x < y as an abbreviation for the statement that ‘x ≤ y and x #= y’.
If S ⊆ X, an upper bound for S is an element b ∈ X such that s ≤ b for all s ∈ S. We
say that S is bounded above if such an upper bound for S exists. Note that b is not
required to belong to the subset S in this case. A maximal element in X is an element
m ∈ X such that no element of X is larger than m; that is, there does not exist x ∈ X
such that m < x.

Example: Z with Divisibility. An example is the relation of divisibility on the set
of integers, in which the pair {4, 15} is incomparable since 4 #

∣∣ 15 and 15 #
∣∣ 4. In this

setting, {1, 2, 4, 8, 16, . . .} is a chain with no upper bound. The chain {3, 12, 36, 1440} has
many choices of upper bound: 1440 is an upper bound (the least upper bound), and 2880
is also an upper bound. There is no maximal element in Z for the divisibility relation.

Example: X ⊂ Z with Divisibility. Now consider the set X consisting of integers
expressible as a product of at most 5 prime factors. For example, X contains 2331 =24
and 233171 = 168 but not 23315171 = 840. We use divisibility as our relation on X.
Every chain in X has at most six elements. Moreover every chain C ⊂ X has an upper
bound: either C = Ø, in which case 1 (or any element of X) is an upper bound for C ,
or the largest element of C is an upper bound for C . The element 32 ∈ X (or, for that
matter, any element with exactly 5 prime factors, not necessarily distinct) is a maximal
element of X. Note, however, that 32 is not an upper bound for X.

Zorn’s Lemma. Let X be a nonempty partially ordered set, and suppose every
chain in X is bounded above. Then X has a maximal element.

Like most authors, we assume this result rather than proving it. The reason for this is
that one cannot prove this result without assuming the Axiom of Choice (or something at
least as strong). This is because Zorn’s Lemma is equivalent to the Axiom of Choice, given
the Zermelo-Fraenkel axioms of set theory. It is typically used as a convenient crutch,
where no maximal element is explicitly constructible. This should not be of great concern,
however, since in practical situations where a maximal element is desired, we can typically
get by without one. We will try to make this point clear in the context of an example.



 APPENDIX: ZORN’S LEMMA

Corollary. Every vector space has a basis.

Proof. Let V be a vector space over a field F . We assume V #= 0; otherwise Ø is a basis
for V .

Let I be the collection of all linearly independent subsets of V . Recall that a subset
S ⊆ V is linearly dependent if there exist distinct vectors v1, v2, . . . , vk ∈ S and scalars
a1, a2, . . . , ak ∈ F , not all zero, such that a1v1 + a2v2 + · · · + akvk = 0. Thus S ∈ I iff
S ⊂ V and S is not linearly dependent. Clearly I is nonempty, since every nonzero vector
v ∈ V gives rise to a linearly independent subset {v} ∈ I.

Let C ⊂ I be any chain. We claim that C is bounded above by
⋃
C. (Recall that

⋃
C is

the union of all members of C; that is,
⋃

C =
⋃

S∈C S.) We must first show that
⋃
C ∈ I.

Consider any distinct vectors v1, v2, . . . , vk ∈
⋃

C and let a1, a2, . . . , ak ∈ F . For every
i = 1, 2, . . . , k, the fact that vi ∈

⋃
C means that vi ∈ Si for some linearly independent

subset Si ∈ C. Since C is a chain, the Si’s are totally ordered by inclusion. This means we
may assume that S1 ⊆ S2 ⊆ · · · ⊆ Sk ; at least this will be the case if v1, v2, . . . , vk were
listed in a suitable order. But now v1, v2, . . . , vk all belong to the linearly independent
set Sk , and so the scalars a1, a2, . . . , ak must all be zero. This shows that C is linearly
independent, so

⋃
C ∈ I. We still need to show that

⋃
C is an upper bound for the chain

C. But this is obvious since for every linearly independent subset S ∈ C, we have S ⊆
⋃

C
by definition.

Let B be a maximal element for I, which exists by Zorn’s Lemma. So B is linearly
independent. It remains to be shown that B spans V . Let v ∈ V . We must show that v is
in the span of B. If v ∈ B then this is clear; so we may assume that v /∈ B, so that B is
a proper subset of B ∪ {v}. Since B is a maximal element of I, it must be the case that
B ∪ {v} is linearly dependent. Thus there exist distinct vectors v1, v2, . . . , vk ∈ B ∪ {v}
and scalars a1, a2, . . . , ak ∈ F , not all zero, such that

a1v1 + a2v2 + · · · + akvk = 0.

Clearly v ∈ {v1, v2, . . . , vk} since B itself is linearly independent; we may assume that
v1 = v. Moreover a1 #= 0, for otherwise we have found a nontrivial linear relation between
v2, v3, . . . , vk ∈ B, which cannot occur since B is linearly dependent. Thus

v = −a−1
1

(
a2v2 + a3v3 + · · · + akvk

)

lies in the span of B, as required. Thus B spans V . Since B is also linearly independent,
B is a basis for V .

For finite dimensional vector spaces, it is very easy to produce bases explicitly, and so
Zorn’s Lemma is not needed in such cases. For many infinite-dimensional vector spaces,
this is not an option. For example, the vector space C([0, 1]) consisting of continuous
functions [0, 1] → R, has a basis, by Zorn’s Lemma. But you will never see an explicit
basis for this vector space! since none can be written down. But in any practical situation
in which C([0, 1]) arises, this is not an issue since we typically deal with only certain
well-known proper subspaces of C([0, 1]) for which explicit bases are known.


