Point Set Topology

Book 1

a collection I of subsets of X Let X be a set. A topology on (called the open sets) such that in Ø, X e J (ii) I is closed under finite intersection and arbitrary union, i.e. if u, v & J then unve J; if ucJ the UleJ. (So for U, V & J. U U V & J. If {U : « e I} is an indexed collection of open sets, then UUa & J.) (standard open set) The standard topology X= R". A set UCR" is open if for all ue U, there exists E>O such that (X) (X) B. (4) CU. Here B(u) = { re R": d(x, u) < 2}. Enclidern listance In other words, a standard open set in R" is a union of open balls. (the open ε -ball cecitered at u).

unions of finite intersections SINSEN... ASK , SI, ..., SKES is a topology and the topology is said to be generated by S. S is called a base (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds it? for all S., Sz & S, S, S, and all u = S. 1 S2 there exists Sze S such that ue Soc Sinsz. Eg. Let X be any set. The discrete topology on X is the collection of all subsets of X. (2") The indiscrete topology on X is &Ø, x}.

If X = 80,13 then there are four possible topologies on X: {Ø, X}, {Ø, 803, 813, X}, {Ø, 803, X}, \$Ø, 813, X}.

Eq. (More goverally) Let X be any set and let S be a collection of subsets of X which over X, i.e. US = X. Then the oblection of all

Let I be the collection of complements of finite sets, and D Let K be an infinite set. X-A= {xe X: x & A}. ASX, AICOS ie. J = {Ø} U {X-A: set difference This is a topology on X, called the finite complement topology. X-A, X-A, $X\setminus A$ Ø, ø, Ø, O A topological space is a pair (X, J) where varnothing I is a topology on a set X. We rnothing Note: UJ = X. By abuse of language, we often say that X is a topological Let X be a set. A distance function (or nettric) on X is a function d: X * X -> [0,00] such that for all x, y, z \in X, d(x,y) = d(y,x) $d(x,y) \ge 0$ and equalify holds iff x = y. $d(x,z) \le d(x,y) + d(y,z)$ The standard topology on R" is a metric topology. The metric $d_{z}(x,y) = \sqrt{(x_{1}-y_{1})^{2} + \cdots + (x_{n}-y_{n})^{2}}$ (the Euclidean metric) $d_{z}(x,y) = |x_{1}-y_{1}| + \cdots + |x_{n}-y_{n}|$ $d_{\infty}(x,y) = \max_{x \in \mathbb{R}} \{|x_{1}-y_{1}|, \cdots, |x_{n}-y_{n}|\}$ all give the sta all give the standard topology on R".

In R? spen halls with respect to de, d, do look like These three metrics, define the same topology. Mary Marie Marie respectively. The metric $d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$ defines the discrete topology.

A topological space is metrizable if its topology can be given by some motric. (not uniquely however)

If X is an infinite set, then its finite configurant topology is not verticable. A topology is Hausdorff if for any two points $x \neq y$, there exist open sets U, V such that $x \in U$, $y \in V$,

(**) (**)

Un $V = \emptyset$.

Every metric space is Hausdorff Since if $x \neq y$, d = d(x,y) > 0. Take $U = B_{S_3}(x)$, $V = B_{S_3}(y)$

A basic open ablid of a point $x \in X$ is an open ablid of x which is basic (i.e. it's in the basis). Even motric spaces can be rother surprising. Consider $X = \mathbb{Q}$. A norm on \mathbb{Q} is a function $\mathbb{Q} \to [0,\infty)$, 1 x -> ||x|| satisfying (i) IIII >0; equality holds iff x=0. (ii) | | xg | | = | |x | | | | | | | | | | | (ii) ||x+y|| \le || x|| + ||y||. From any norm on Q, we obtain a metric d(x,y) = ||x-y||.

One way to do this is with the unal absolute value $||x|| = |x| = |x| = |x|_{\infty} = \begin{cases} x, & \text{if } x > 0; \\ -x, & \text{if } x < 0. \end{cases}$ This gives the standard to pology on Q. An after adive is: given $x \in \mathbb{Q}$, if x = 0 define $\|0\|_2 = 0$. If $x \neq 0$, write $x = 2^k \frac{a}{4}$, $a, b, k \in \mathbb{Z}$, $b \neq 0$; $a, b \neq 0$. Then define $\|x\|_{2} = 2^{-k}$. This is the 2-adic norm on \mathbb{R} . In fact it satisfies a stronger form of (iii), the ultrametric inequality $\|x + y\| \leq \max_{k} \|x\|$, $\|y\|_{2}^{2} \leq \|x\| + \|y\|$.

An open neighbourhood of a point $x \in X$ is an open set containing x.

Compare:
$$\|\frac{20}{24}\|_{2} + \|\frac{5}{14}\|_{2} = 225$$
.

A basic open while of 2000 books like

 $B_{\epsilon}(0) = \{x \in \mathbb{Q} : \|x\|_{2} < \epsilon \}$
 $B_{\epsilon}(0) = \{x \in \mathbb{Q} : \|x\|_{2} < \epsilon \} = \{\frac{4}{5} : 4, 6 \in \mathbb{Z}, 4 \text{ even, } b \text{ odd} \}$.

Every point in the ball is a centre of the ball ie. if $\epsilon \in B_{\epsilon}(0)$ then $B_{\epsilon}(0) = B_{\epsilon}(0)$.

E.g. $\left\|\frac{20}{24} + \frac{5}{14}\right\|_{2} = \left\|\frac{40 + 15}{42}\right\|_{2} = \left\|\frac{55}{42}\right\|_{2} = 2.$

 $\left\|\frac{20}{21}\right\|_{2} = \frac{1}{4}, \quad \left\|\frac{5}{7}\right\|_{2} = 2$

1+2+4+8+16+32+64+... = -1 The partial sums 1, 3, 7, 15, 31, 63, ... converge to -1 in the 2-adic norm.

Note: If $(x_n)_n$ is a sequence of points in a top. =pace X, we say $(x_n)_n$ converges to $x \in X$ if for every open while U of x, $x_n \in U$ for all u open while large. (This means: for all u open while u of u, the exists u each that $u \in U$ whenever u > u.)

In place of arbitrary open wholes of x, it suffices to check basic open wholes. For matric topology, it suffices to check open balls. In this case, $x_n \rightarrow x$ provided that for all $\epsilon > 0$, there exist N such that

i.e. $d(x_n, x) < \varepsilon$ whenever n > N.

In our example above, $d(x_n, x) = 2^n \rightarrow 0$ as $n \rightarrow \infty$.

 $\|2^n\|=\frac{1}{2^n}\rightarrow 0$ as $n\rightarrow \infty$.

Find the inverse of 5 mod 64.

1+9 = 1-4 + 16 - 64 + 256 -1024 +... In Z/GAZ Eg. in Z with the finite complement topology, the sequence (n) = (1,2,3,...) converges. It converges to 22. In fact for every $a \in \mathbb{Z}$, $(a)_n \rightarrow a$. (n) $\rightarrow 22.$ Theorem If X is Housdorff, then every sequence in X has at most one limit. (it converges to at most one point.) Proof Suppose a+6 in a Housdorff space X where a sequence (xn), -> a
and (xn), -> 6. Choose disjoint open 1, 13, 25, 84 There exists N, such that respectively.

There exists N, such that respectively.

There exists N, such that respectively. then pick no max [Ni, Nz] to obtain a contradiction. xneV for all n > N2.

We prefer to write $(x_n)_n \rightarrow a$ rather than $\lim_{n\to\infty} x_n = a$ in general.

In any top. space, closed sets are the complements of open sets.

Ø, X are closed

If K, K' are closed then K U K' is closed. (So finite unions of closed sets are closed.)

Arbitrary intersections of closed sets are closed.

De Morgan laws: $X - (UA_{\alpha}) = \bigcap_{\alpha \in I} (X - A_{\alpha})$ $X - (\bigcap_{\alpha \in I} A_{\alpha}) = \bigcup_{\alpha \in I} (X - A_{\alpha})$

Let X be a top. space. Given $A \subseteq X$, the closure of A is the (unique) smallest closed set containing A i.e. $\overline{A} = \bigcap \{K \subseteq X : K \text{ closed}, K \supseteq A\}$.

The interior of A is the largest open set contained in A, i.e.

A° = U {UCA: U open in X}. (X-A) = X-A; X-A = X-A°.

Theorem There are infinitely many primes.

Known proofs: Euclid's proof (elementary)

Euler's proof (analytic proof: 27 diverges)

This proof is topological. Proof form a topology on X=Z whose basic open sets are the arithmetic progressing ..., -6,-1,4,9,14,19,... for example. ...-6,-1,4,9,14,19,... for example. Every nonempty open set is infinite. Suppose there are only finitely many prines: (PI < 00 is the set of all prins 9-1,13 = {a e Z : a is not livisible by any prime }. = Ofaek: a is not divisible by p} Ua,p= {xeZ: X=a modp} PEP (U, v Uz, p v ··· v Up-1, p) is open. However it has only 2 elements, a contradiction More generally, let G be a group. Consider the topology on G whose basic open sets, are cosets of subgroups $H \leq G$ of finite index, i.e. $gH = \{gh: heH\}, [G: H] < \infty$.

 T_1 : Points are closed if y If $x \in X$ and $y \neq x$, then there is an open whole U of x with $y \notin U$. $T_2 \Rightarrow T_1$. Exercise: Give an example of a top. Space which is T_1 but not T_2 . One answer: the finite complement topology for an infinite set. Let $f: X \rightarrow Y$ be any function. For any $B \subseteq Y$, the preimage of B in X under f is $f'(B) = \{x \in X : f(x) \in B\}$. Similarly if $A \subseteq X$, the image of A in Y is $f(A) = \{f(a) : a \in A\}$. In general $f(f(A)) \subseteq A \subseteq f'(f(A))$ Now let X and Y be top spaces, ie. (X, I) and (Y, J'). A function $f: X \rightarrow Y$ is continuous if the preimage of every open set (in Y) is open (in X); i.e. for every $U \subseteq Y$ open, $f'(U) \subseteq X$ is open.

Exercise: Convince yourself that the standard "definition of continuity for functions R" > R" is just a special case of this. (For the standard topologies on

Theorem If f: X -> Y and g: Y -> Z are continuous, so is gof: X -> Z. Proof If $U\subseteq Z$ is open then $g'(u)\subseteq Y$ is open so $f(g'(u))\subseteq X$ is open. when are two topological spaces X,Y "the same"? $(X \simeq Y : X,Y)$ are homeomorphic This means there is a bijection $X \to Y$ taking one topology to the other. I.e. there is a bijection $f: X \to Y$ such that f, f are continuous. Eq. X is R with the standard topology; Y is R with the finite complement topology; Z. R. R. with the discrete topology; W is R with the indiscrete topology & Ø, R} $Z \rightarrow X \rightarrow Y \rightarrow W$ where L(x) = x. If I, I are two topologies on K, we say coarsest topology J' is fines than J if J'DJ (I' is a refinement of I) J' is coarser than J if J'C J