

Fg. (More generally) Let ✗ be any set and lets be ^a collection of subsets of ✗ which cover ✗ , i.e. Us ⁼ ✗ . Then the collection of all unions of finite intersections $s_i \cap S_2 \cap \cdots \cap S_k$, $S_i \cap S_k \in S$ is a topology on ✗ . The members of S are called ^a sub . basis for this topology and the topology is said to be generated by S. S is called a <u>base</u> (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds if for all S_{1} , S_{2} \in S_{1} S_{s} S_{t} and all $u \in S_{t} \cap S_{z}$ there exists $S_{3} \in S_{3}$ such that Eg. Let ✗ be any set . $u \in S_3 \subseteq S_1 \cap S_2$. on X is the collection of all subsets of X . (2^x) The indiscrete topology on X is { Ø, x }. If $X = \{0, 1\}$ then there are four possible topologies on $X := \{0, X\}$, $\{0, 80\}$, $\{1\}$, $X\}$, $\{ \phi, \{\circ\}, \chi \}$, $\{ \phi, \{\circ\}, \chi \}$.

In R², open halls with aspect to dr., dr, do look like These three metrics define the same topology. $\frac{d}{dx}$ $\frac{d}{dx}$ $\frac{d}{dx}$ respectively. I. Fill The metric d(xg)= $\begin{cases} 0, & \text{if } n \geq 0, \text{if } n = 1, & \text{if } n$ if ✗ =T defines the discrete topology . $\int f \cdot x + y$ ^A topological space is metrizable if its topology can be given by some metric . (not uniquely however) If ✗ is an infinite set, then its finite complement topology is not metrizable. ^A topology is Hausdorff if for any t wo points $x + y$, there exist open sets U, V' such that $x \in U, y \in V,$ C y open sets u_i Every metric space is Hausdorff since if $x \neq y$, $d = d(x, y) > 0$. Take $U = B_{S_A}(x)$ $V = B_{s/3}$ (y)

 $|1+2+4+8+16+32+64+... = -1$ The partial sums 1, 3, 7, 15, 31, 63, ... converge to -1 in the 2-adic norm. Note: If (x_n) is a sequence of points in a top. space X, we say $(x_n)_n$ converges to $x \in X$ if for every open nbhd U of x , $x_u \in U$ for all a sufficient U large . (This means : for all ^U open nbhd (x^2-x^2) , x^2 \cdot x, of x, the exists N such that $x_n \in U$ x_5 x_2 x_3 x_2 x_4 x_5 x_6 x_7 x_8 x_9 \mathcal{H}_q In place of arbitrary open nbhds of x, it suffices to check basic open nbhds. For metric topology, it suffices to check open balls. In this case, $\pi_a \rightarrow x$ provided that for all $\varepsilon > 0$, there exists N such that $x_n \in B_{\epsilon}(x)$ whenever $n > N$. In our example above. $d(x_{n+1}x) = 2 \rightarrow \infty$ as $n \rightarrow \infty$. In place of arbitrary
For metric topo
 $\pi_n \rightarrow x$ provid
 $\pi_n \in B_{\epsilon}$ for
ie. $d(x_n, x) <$
in our example $||2^n|| = \frac{1}{2} \rightarrow 0$ as $n \rightarrow \infty$. Find the inverse of 5 mod b9.

 I_n Z_{1672} $= 1 - 4 + 16 - 64 + 256 - 1024 + \cdots$ In $\frac{2}{65}$: $\frac{1}{5}$ =
Eg. in Z with the
converges. It converges $= 1 - 4 + 16$ $= 15.$ E_g . in Z with the finite complement topology, the sequence $(n)_n = (1,2,3)$..) converges . It converges to 22. (n) \rightarrow 22. In fact for every $a \in \mathbb{Z}$,
 $(a)_n \rightarrow a$. 。
● 1 Theorem If X is Hausdorff, then every sequence in ✗ has at most one limit. (it converges $\frac{1}{25}$. Proof Suppose a≠b in a Hausdorff space X where a sequence Gr. In + a $1, 13, 25, 84$ ord and $(x_n)_n \rightarrow b$. Choose disjoint open 1^{13} , 25, 84 84 and \bigcirc \bigcirc \bigcirc \bigcirc which \bigcirc y Then pick $n > max \{N_1, N_2\}$ to There exists N_i such that respectively. obtain ^a contradiction . $x_n \in U$ for all $n > N_i$; also N_2 such that $x_n \in V$ for all $n > N_2$.

Theorem If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, so is gof: $X \rightarrow Z$. Proof If $U \subseteq Z$ is open then $g'(U) \subseteq Y$ is open so $f(g'(u)) \subseteq X$ is open. $(s \cdot f)(u)$ \Box when are two topological spaces X, ^Y " the same " ? (✗ ≈Y : ✗ . Yare homeomorphic this means there is a bijection $X \rightarrow Y$ taking one topology to the other. I.e. there is a bijection f: X→ Y such that f, f are continuous. f " Eg . X is R with the standard topology; ^Y is ^R with the finite complement topology ; 2- is IR with the discrete topology ; v4 is IR with the indiscrete topology { [∅], ^R} . W is IR with the indiscrete to $Z \rightarrow X \rightarrow Y \rightarrow W$ where $L(x)$
finists coarsest If I , T ' are two topologies on ✗ , we say finist
topology topology
on R \overline{a} \overline{b} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} \overline{c} is finer than I if I oarsest If J, J are two topologies
pology topology J's fine than J if J'7J
on R <u>finer</u> them J if J' 7 J
(J' is a refinement of J) ์
ป ' (1) is a refinement of I)
is coarser than I if $J'C$ J .