

Berustein Cantor. Schröder Theorem Let A, B be sets. If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|. I.e. if there is an injection $A \rightarrow B$ and an injection $B \rightarrow A$ then there is a bijection $A \rightarrow B$. Here IAIS [B] mæns there is an injection A -> B i.e. A is in one-to-one correspondence with a subset of B. This is equivalent to the existence of a surjection B-it under the Axiom of Choice. Bernstein-Cartor-Schröder Theorem uses ZF A B Eq. |(0,1)| = |[0,1]| but what is an explicit bijection? There is an injetion $(0,1) \rightarrow [0,1]$, $\pi \mapsto \pi$. So $|(0,1)| \leq |[0,1]|$. There is an injection $[0,1] \rightarrow (0,1), \ \chi \mapsto \frac{1}{3}(\chi+1), \ So [[0,1]] \leq [(0,1)],$ $|\mathbb{R}| = |\mathbb{R}^3| = |[0,1]| = |[0,1]^{>}|$

$[0,1] \rightarrow [0,1]^{S}, \pi \mapsto (\pi,0,0)$ is an injection. $[0,1]^{S} \rightarrow [0,1], (\pi,g,2) \mapsto 0.\pi,g_{1} \approx \pi_{2}g_{2} \approx \pi_{3}g_{3} \approx \pi_{4}g_{4} \approx q_{4}$
$X = O. X_1 X_2 X_3 X_4 \cdots$ $y \in D. y_1 y_2 y_3 y_4 \cdots$
$Z = 0.2; 2z 2; 2q \cdots$ Theorem $X = \mathbb{R}^3 - \{0\}$ can be partitioned into lines.
Use transfinite induction.
(X) = (R) = 2 ⁵⁰ And how wany lines do we need to concer X?
Let 2 be a set of lines partitioning X. then 2 = 200
Pick a point on each $l \in \mathbb{Z}$. This gives an injection $2 \longrightarrow \mathbb{R}^{-50}$ $ \mathcal{Z} \leq IR^3 = 2^{50}$. An injection $\mathbb{R}^3 \longrightarrow \mathbb{Z}^2$ $\mathbb{R}^3 \xrightarrow{1:1} \mathbb{R} \xrightarrow{1:1} \mathbb$
Let l'be any line in / winco

To construct 2, we inductively construct a	sequence sets of disjoint lines in X
$\mathcal{Z}_{\mathcal{A}} \subseteq \mathcal{Z}_{\mathcal{A}} \subseteq \mathcal{Z} \subseteq \mathcal{Z} \subseteq \mathcal{Z} $	
hoping that "in the limit" we cover all of X.	
$\mathcal{S}_{\mathcal{O}} = \mathcal{O}.$	$\int t = R^2 - \{0\}$
$\Sigma_{i} = \{l_{i}\}$	$P_{o} = R^{3} - \{o\}$
$\Sigma_{2} = \{l_{o}, l_{i}\}$	Well order the points of X
$Z_3 = Plo, l, l, \xi$	$\overset{\text{ds}}{\overset{\text{l}}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}}{\overset{\text{l}}{\overset{\text{l}}}{\overset{\text{l}}{\overset{\text{l}}{\overset{\text{l}}}{\overset{\text{l}}{\overset{\text{l}}}{\overset{\text{l}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{\text{l}}}{\overset{l}}{\overset{\text{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{}\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{}\overset{l}}{}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{}\overset{l}}}{}\overset{l}}{}}{\overset{l}}}{}\overset{l}}{}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{}\overset{l}}{}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{\overset{l}}}{}\overset{l}}{}}{\overset{l}}}{}\overset{l}}{}\overset{l}}{}}{\overset{l}}}{}\overset{l}}{}}{\overset{l}}}{}\overset{l}}{}\overset{l}}{}}{\overset{l}}}{}\overset{l}}{}\overset{l}}}{}\overset{l}}}{}\overset{l}}}{}\overset{l}}{}}{\overset{l}}}{}\overset{l}}}{}\overset{l}}{}}{l$
	where A is well ordered. Actually we can take A = K
Inductively construct Zp, BEA, a set of disjoint lines in X, such that	the smallest ordinal such that
· Zp covers Px whenever << p.	$ \kappa = 2^{\kappa_0}$
• $\left(\sum_{\beta}\right) \leq \beta < K = 2^{K_{\circ}}$	· · · · · · · · · · · · · · · · · · ·
	Take $\Sigma = \bigcup \Sigma_{\beta \in A}$
• $\Sigma_{\beta} \subseteq Z_{\gamma}$ whenever $\beta \leq \gamma$	(°**
· · · · · · · · · · · · · · · · · · ·	

Key Lemma: (inductive step) with $|\Sigma| < |\kappa| = 2^{\aleph_0}$ Given a set Σ of disjoint lines in Xwith $P \in X$ not covered by Σ (P $(P \notin U \Sigma)$, encon of lines there exists line l in X disjoint from all lines in Z passing through P. Consider a cone with vertex P. Every line of Z hits this cone in at most 2 points. There are 2⁴⁰ lives in This cone passing through P, at most |2| < 2⁵⁰ hit lives of Z. By the Pigeon Lole Principle, I exist. Store - Cech Compacti-fication Where are we headed? (Rough plan)
Product spaces. Tychonoff's Theorem.
Separation axions. Urysolin's Lemma.
Examples: Tychonoff's corkscrew, Tychonoff's Plank
Metrizatizaliility? · Uttrafitters

Given top, speces X, Y, we have the disjoint and viewed as (X×803) U (Y×813)	ion XUY which can be
ξ(x,o): πe χζ ξ(y, 1): ye Y ?	Rx E13= the line y=1
	Rx {0} = x-anis (y=0)
WLOG I will assume X and Y are already A excessive notation of ordered pairs). Open sets in XHY are of the form UHV with open. In fact XHY is the coproduct of theoretic sense. XHY enjoys the following un Given top. Spaces X and Y a coproduct of X and two morphisms (continuous maps) to: X -> such that whenever Z is a top. space and f: (note: flassimed to be continuous), there exists a fing! & that this diagram commutes X by XHY in Y is diagram commutes	Pere USX is open and VEY is X and Y in the category- iversal property: and Y is a top. space XMY XMY, 4: Y->XMY X-7Z, g:Y->Z Morphic Jug:XMY->Z Such i.R. (Jug) = see over

 $X \sqcup Y = (X \times \{0\}) \cup (Y \times \{1\})$ x - X - Y - Y $(fug)(x,o) = f(x) \in \mathbb{Z}$ $(f \cup g)(y, 1) = g(y) \in \mathbb{Z}$ Any XwY together with 10, 1, satisfying this universal property is a (the) coproduct of X and Y. It excists by our construction; and it is unique. If we also satisfies the same mineral property then X jo ji Y Jo why j. X Lo XWY L, Y X Jo W Ji (continos) Given top. speces X, Y, a product is a top. space XXY together with morphisms T: XXY - X, TT: : XXY ->Y such that for every top. space Z and morphisms f: Z-7X, g: Z-7Y, there exists h: Z-7XXY such that The following diagram Commutes: f 2 g X C XXY T, Y

	Existence of direct product: X,	$rY = \xi(r, q) : r \in X, q$	ا∈ ۲ گ
R Z g h T, Y X C XXY T, Y	Topology: UXV SXXY (USX are a basis for top. on XX	(VSY open)	
$\pi_{\bullet} \colon (X, Y) \to X$	$\pi_i: X * Y \longrightarrow Y$		
$\pi_{o}: (X,Y) \to X$ $(x,y) \rightarrowtail x$	(x,y) - y		
Given f Z g	we have $h(z) = (f(z), g(z))$.		
X	· · · · · · · · · · · · · · · · · · ·		
The product to pe for which the t	bogy X × Y is the coarsest topolo wo projections To, TT, are continuous	gy on the Cattesian :	product
The product to pe for which the t We require To (U)	logy X × Y is the coarsest topolo two projections To, TT, are continuous = U×Y to be orden in X×Y wherever	gy on the Cattesian : 15. UEX is open. Al	product so
We require To(U)	= UXY to be open in XXY whenever	UEX is open. Al	preduct So
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. Al VEY	preduct So
We require $T_o(U)$	= UXY to be open in XXY whenever	UEX is open. Al VEY	preduct 80
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. Al VEY	product So
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. Al VEY	product So
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. Al VEY	product 80

Eg. R ² = R × R has topology generated by 7/1/1: 0 which is the standard topology.	(*V (U,VER).
A topological group is a group G endowed with such that the maps $G \rightarrow G$ is continuous $g \rightarrow g''$	a topology s
and GxG ~> G is also continuous. (g,h) ~> gh	
Eq. Consider $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = \begin{cases} \frac{2\pi y}{x^2 + y^2}, \\ \mathbb{R}^{\pi} \mathbb{R} \end{cases}$ The map $\mathbb{R} \to \mathbb{R}, x \mapsto f(x, b)$ is continuous for every	if $(x,q) \neq (0,0);$ if $(x,q) = (0,0).$ be R .
But f is not continuous $f'(1) = \{(x, x) \in \mathbb{R}^2 : x \neq 0\} = \frac{2xy}{x + y^2} = 1\}$ $= \{(x, x) \in \mathbb{R}^2 : x \neq 0\}$ is not closed in \mathbb{R}^2 .	$Q \in [R], \qquad y = x$ $2xy = x^{2} + y^{2} \qquad [$
$f(I) = \{(x,y) \in \mathbb{R} : T(x,y) = \frac{1}{x+y^2} = 1\}$ = $\{(x,x) \in \mathbb{R}^2 : x \neq 0\}$ is not closed in \mathbb{R}^2 .	$(x-y)^2 = 0$

(R, +) is a topological group.	· · · · · · · ·		· · · · · · · · · · ·
(\mathbb{R}^{*}, \times) · · · ·			
+ x are continuous maps R -> R.	· · · · · · · · ·		· · · · · · · · · · · ·
If f,g: R-R is continuous then so are One way to see this is	fig, fg.		
$(f * g) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x, y) \longmapsto (f(x), g(y))$ is continuous.			
$\mathbb{R} \longrightarrow \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \longrightarrow \mathbb{R}$ $\mathfrak{x} \longmapsto (\mathfrak{x}, \pi) \longmapsto (\mathfrak{f}_{G}, \mathfrak{g}_{G}) \longmapsto \mathfrak{f}_{G}) + \mathfrak{g}_{G}).$	Similarly	for	multiplication.
diagonal enhedding of R in R ² .	· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · <		· ·
Given a top. space X. is the diagonal embedding dways continuous?			

	space (X, d) , $d: X \times X \longrightarrow [c]$ ms. of product spaces generalizes easily $x \times \cdots \times X$ as a special case.	$fo X_1 \times X_2 \times \cdots \times X_n$
Infinite products Intertion: TTX	are a little bit more subtle. (I some index set)	
Special case: _ 11	$R = R \times R \times R \times \dots = \{a_{0}, a_{r}\}$ Every function $\omega \longrightarrow R$	q_{2}, \cdots) : $q_{i} \in \mathbb{R}^{2}$
R ⁴³ ⁿ⁼⁰	Every function $\omega \longrightarrow \mathbb{R}$	
· · · · · · · · · · · · · · ·	$n \mapsto Q_n$	f∈ R ^R
RR = & function		

The product topology for $\mathbb{R}^{\mathbb{R}} = \{ \text{functions } \mathbb{R} \to \mathbb{R} \}$ is the coarsest topology for which the projections $f \mapsto f(a)$ (a \in \mathbb{R}) are continuous. This means we aquire : for every $\geq >0$, bet, $\{f \in \mathbb{R}^{\mathbb{R}} : f(a) \in \mathbb{B}_{2}(b)\}$ Bech) or any open set in R. is open in R. -) & RxRx ··· xR × U x R × ---, -(a),no restriction no restriction General product: Let X_x (xe A, some index set A) her top spaces. The <u>product space</u> TT X_x has the Cartesian product as its underlying set. As a set, an element x = (x a) deA & TT Xa is really a function A - VXx subject to Xx E Xx for all oce A. (Special case: all Xx isamorphic to X; X > Xx is a map A -> X= X). If $X_x \neq \emptyset$ for all a $\in A$, then $\prod X_x \neq \emptyset$. This uses AC = Axian of Choice

If all $X_{\alpha} = X$ for all $x \in A$ then $\prod X_{\alpha} = X^{A} = \S$ functions $A \to X \S \neq \emptyset$ assuming $X \neq \emptyset$. This holds in ZF without sequiving AC. Let $x \in X$ and consider the constant function $f(\alpha) = x$ for all $x \in A$. This gives the diagonal embedding X -> XA. Topology on Tt Xe: A sublassis consists of the open cylinders $\{x = (x_{\alpha})_{\alpha} : x_{\alpha} \in X_{\alpha} \text{ arbitrary for } \alpha \neq \beta; x_{\beta} \in U^{2}\}$ where $\beta \in A$, $U \subseteq X_{\beta}$ open = TTB'(U) where TTB: TTX -> XB $= U \times TT X_{\alpha}$ in coordinate & a=B x= (xx) orea > xB Under finite intersections, these generate a basis for the topology on the product space. Basic open sets have the form where k = 1 is a positive integer. {x ∈ (xa)reA x ∈ Ua; for i=1,..., k } $a_1, \cdots, a_k \in A_j$ Arbitrary open sets are milions of basic open sets. are open sets This is the product topology (or the Tychonoff topology).

If instead one takes as basic open sets It U, (U, S X, open) then one gets the box topology. det the Cartesian product This is a refinement of the product topology. Unless otherwise specified, the topology on IT X is understood fo be the product topology. Eg. RR = TTR = {functions R-R ? Each Emotion F: R-> R determines a point (F(x)) x E IR (a generalizel sequence). A basic open ubbd of f E R has the form U_i is an optiment of the form of the form R in R?. $2g \in \mathbb{R}^{\mathbb{R}}$: $g(x_i) \in \mathcal{U}_i$, i = 1, 2, ..., kor specifically i= (,..., k} $\left\{g \in \mathbb{R}^{K}: |g(x_{i}) - f(x_{i})\right\} < \varepsilon_{i}$ Varying X1,..., Xk, k, Z1,..., Ek we get a basis for the topology of IR in this way.

A converget sequence of functions in $\mathbb{R}^{\mathbb{R}}$: $f_n(x) = \begin{cases} 0, & \text{if } |x| < n \\ n, & \text{if } |x| \ge n. \end{cases}$ In -> 0 i.e. for any besic open nord of O, for ell n>0. 2000 function In usual language, $f_n \rightarrow 0$ pointwice meaning for all $x \in \mathbb{R}$, $f_n(x) \rightarrow 0$. $\omega = \{0, 1, 2, 3, \dots\}$ In the box topology, for /> 0. Take X = R × R × R × R × m = {(q, q, q, q, q, m) : q; e R} = R as a set (Cartesian product). Compare product topology, box topology, and topologies from a few norms including |(x/100 = sup [q;]. $\| x \|_{1} = \sum_{i=1}^{n} |a_{i}| = |a_{0}| + |a_{1}| + |a_{2}| + \cdots$ $\| x \|_{2} = (\sum |a_{1}|^{2})^{Y_{2}}$

 $\mathcal{L}' = \{ x \in \mathbb{R}^{\omega} : \|x\|_{2} < \infty \}$ $\mathcal{L}' = \{ x \in \mathbb{R}^{\omega} : \|x\|_{2} < \infty \}$ $\mathcal{L}^{\sim} = \{x \in \mathbb{R}^{\sim} : \|x\|_{\infty} < \infty\}$ $\mathbf{x}_{i} = -\left(\left(\mathbf{1}_{i} \mid \mathbf{I}_{i} \mid \mathbf{$ $\chi_{2} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \cdots\right)$ メラー (ちちちち ち ・・・) $x_{-} = \left(\begin{array}{c} \pm \\ - \\ - \\ \end{array} \right) \left(\begin{array}{c} \pm \\ \end{array} \right) \left(\begin{array}{c} \pm \\ - \\ \end{array} \right) \left(\begin{array}{c} \pm \\ \end{array} \right) \left(\begin{array}{c} \pm \\ - \\ \end{array} \right) \left(\begin{array}{c} \pm \\ \end{array} \right) \left(\begin{array}{c} \pm \\ - \\ \end{array} \right) \left(\begin{array}{c} \pm \end{array} \right) \left(\begin{array}{c} \pm \\ \end{array} \right) \left(\begin{array}{c} \pm \end{array} \right) \left(\begin{array}{c$ n -> 0 = (0,0,0,...) in the product topology but not in the box topology In the uniform norm topology, Xn->0 (Xn-70 in l). In the box topology, $\Pi(-\frac{1}{n+1}, \frac{1}{n+1})$ is a basic open nord of O and it contains no toms of the sequence (Xn) ... en

Now consider $y_1 = (1, 0, 0, 0, 0, ...)$ Nyn11,= 2 <∞ $\|y_n\|_2 = \frac{1}{16} < \infty$ yz= (±, ±, 0, 0, 0, ...) y3 = (\$, \$, \$, 9,0,...) etc. $\|y_{\alpha}\|_{\infty} = \frac{1}{n} < \infty$ $y_n = (\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \frac{1}{n}, 0, 0, \cdots) \longrightarrow 0$ in $l_i^2 d_i^{\infty}$ product topology heat not in the box topology. The box topology has $TT(-\frac{1}{2^{n+1}},\frac{1}{2^{n+1}})$ as a basic open which of 0 and it contains no term of the sequence of points $(y_n)_n$. The product topology is sometimes called the topology of pointwise convergence. The box topology is not usually as useful the other topologies.

A sequence fin in R^A converges uniformly to f if for all E>O there exists N such that $|f_n(a) - f(a)| < 2$ whenever n > NBasic open sets in the topology look like UA = TtU, USR is open. (finer than the product topology but coarser than the box toplogy). If IAI<00 then the product topology on TIX. agrees with the box topology. If IA(= 18) then products IT X, and TIY are essentially the same. etter the definition of the product or box topology.) IR ~ R R in the product topology

(as a topological space) The Cantor Space K, = [0,1] $K_{2} = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ Kg= (の行いに、行いに、子」、「、子」、「、「、」 etc. C= NKn is a compact top. space. CCR and we take the standard topology. It is a metric space. If is totally disconnected: given $x \neq y$ in C, there exists a partition C=ULIV, U,VCC open, $x \in U$, $y \in V$. Equivalently, C = 10,13^w = 2^w with the product topology. (30,13 is listing Points of C have the form (a, 9, 9, 9, ...) where 9; E Eq. 13. $|C| = |R| = 2^{\aleph_0}$

A set of basic open noblds of $a=(a_0, a_1, a_2, a_3,) \in ($ is	the	set	of a	
$\{b \in C: b_i = a_i, for i \leq n \}$.	· · ·	· · · · ·		
A metric defining this topology is	· · ·	· · · · ·		
A metric defining this topology is $d(a, b) = \begin{cases} 0, & \text{if } a = b \end{cases}$ $d(a, b) = \begin{cases} 1, & \text{if } a \neq b, & \text{for some } and & \text{we take the } \\ \frac{1}{2^n}, & \text{if } a \neq b, & \text{for some } and & \text{we take the } \end{cases}$	 	 	· · · · · ·	
	· · ·	· · · · ·		
A homeomorphism = {a e Q: a _2 < 1 }.	· · ·	· · · · ·		
This is really $\mathbb{Z}_2 = 2 \cdot aarc aceques$ $= \{a \in \mathbb{Q} : \ a\ _2 \leq 1\}$. A homeomorphism $\{0, 1\}^{\mathbb{N}} \longrightarrow U_{Suel} Cantor set \bigwedge K_n is$ $(q_1, q_2, q_1, \dots) \longrightarrow \overset{2}{\geq} \frac{2q_n}{2}$	· · ·	· · · · ·	· · · ·	· ·
n = 13	· · ·	· · · · ·		
The Cantor Space is the migue compact Hausdorst space with which is second comptable having a comptable base of clopen se	ont ets.	zolati	d point	5
The Cantor Space is the migue compact Hausdorsf space with which is second compact having a compact below base of clopen se Second compable: having a compable base. Separable: having Second compable: having a compable base. Separable: having AGX is dense	if A ere	countable ∩U≠ my open	dense Ø for U=Ø.	2

Tychonoll's Treasen A product of a	ompact spaces is compact.
That is, if K_{α} (we A) is an indexed	family of compact spaces, then
TT Kox is compact. (NB: Use a NB: Use a NB	nearry the product topology here.) means "take note"
eg. [0,1] is compact in the product	topology.
Not in the box topology eq. for en	$e_{xy} a \in \{0, 1\}^{\omega}$ i.e. $a = (a_0, a_1, a_2,) q \in [p, 1]$
$\mathcal{U}_{a} = (1 \mathcal{U}_{a(i)})$	$U_0 = [0, \frac{2}{3}), U_1 = (\frac{1}{3}, 1]$ open in $[0, 1]$
including $U_{(q;q;1;q),qq)} = U_{x}U_{x}U_{x}U_{x}$ Covers $[o_{i}:]^{\omega}$. No finite number of t	$U_1 \times \cdots$ Here U_6 's cover $[0,1]^{\omega}$
X is Hausdorff if for all x = y in X	, there are disjoint open woulds of randy.
X is regular if for every closed	, there are disjoint open molds of randy. x (y) $x \in U$, $K \leq V$. x (x) U (K) U (K)
are open sets U, V with UNV=0	$r = \mathcal{U}, K \leq \mathcal{V}.$ $(r^{\bullet})(K)$
X is normal if (D)(D)	u v

Warning normal spaces are not necessarily regular (unless points are closed) f_{g} , $\chi = \{0,1\}$ This space is normal. It's not regular. Open sets: Ø, So? X Chosed sets: Ø, SI? X. 0 1 $\frac{(lrysoluis)}{disjoint} \frac{leme}{closed} sets, K,L, there exists a continuous function <math>X \rightarrow [0,1]$ such that f(x) = 0 for all $x \in K$, f(x) = 1 for all $x \in L$. Metric spaces are Hansdorff, normal and equilar. In any metric space (X, d), d: X × X → [0,00) is continuous. If $A \subseteq X$, we can define distance from $x \in X$ to A: $d(x, A) = \inf d(x, q)$. This is a continuous map $X \rightarrow [0,\infty)$. d(x,A)=0 iff $x \in \overline{A} = closeve$ d(A,B) = iof d(a,B). If A,B are disjoint dosed sets then d(A,B) > 0. $g \in A$ $f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}$

Wed Oct 19 } prerecorded lectures on Baire Category - see website (Lecture Fri Oct 21 } videos + pers) Lemma X is normal iff whenever K CV with K closed and Vopen, $(\overline{U} = closure of U = smallest closed set containing U).$ X-V= {rex: rev} Proof K U Ü closed Proof of Noysohn's lamma (\Leftarrow) Suppose K, L disjoint closed sets in a space X and $f: X \rightarrow [0,1]$ is continuous with $f|_{k=0}^{=0}$, $f|_{L=1}^{=1}$. Let $U = f([0, \frac{1}{3})) \subseteq X$ is open. $V = f((\frac{3}{3}, 1)) \subseteq X$ is open. UNV=Ø, KSU, LEV. So X is normal.

<u>Ury solur's Lerme</u> X is a normal top space iff for every pair of disjoint closed sets K(L) there exists a continuous function $X \rightarrow [0,1]$ such that f(x) = 0 for all $r \in K$, |f(x) = 1 for all $x \in L$. Urysolu's Lema We recursively use the Lamma Proof (>) to find an indexed collection of open sets la shere a is any dyadic rationalin [0,1] (kyadic rationals have the form $\frac{m}{2^{k}}$, m, k $\in \mathbb{Z}$) Such that $U_a \subseteq U_a \subseteq U_1$ whenever $0 \leq q < b \leq 1$ U. U. U. U. KSUA UA OL=Ø for relaid, $f(x) = \inf \{r \in [0, i] : x \in U_r\}, \frac{1}{4}$

Question: It & is regular, i.e. K ×€K nuist there exist a continuous fonction $f: X \rightarrow [0, 1]$ such that f(x)=0, $f|_{K}=1$? No! There is no analogue of Urysolin's Lemme for regularity. X is completely regular if whenever : [K] K closed, r&K, there exist continuous f: X-7 [0,1], f(x)=0, f/x=1. Tere exist top. spaces which are regular but not completely equilar (eg. Tychonoff corkstrew) but we will omit this. X is completely normal if every subspace of X 3 normal. Remarks: If X is completely regular then X is regular (easy) and every subspace of X is also completely regular. In X: X ANKA There exist continuous f: X -> [0,1] such that f(x)=0, f|_{K}=1. Restricting f 70 fl, we see that A is also completely regular.

Is every subspace of a normal space normal? No: see Tychnoff's Plank. K) ANK Any .

W= (1100 discrete			
$= \{0, 1, 2, 3, \dots\}$			
$\omega + 1 = \{0, 1, 2, \dots, \} \cup \{\omega\}$	· · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·	
= ((11-) in which	Ew? is not open		
		(m-1, n-17	
$cu2 = \left(IN I = cu + cu2 \right)$	e		1 - 2 C D
$\omega^2 = \omega + \omega + \omega + \cdots = (\mathbf{h})$	1_ 10- 10 ··· ≃ {m	: ma positive	integers ; C K a
	li li li li		0 /
cu fimes	· · · · · · · · · · · · · · · · · · ·		
$(0,0) < (0,1) < (0,2) < (0,3) < \cdots$	< (1,0) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1,1) < (1	$ \frac{3}{3}$ $ \frac{3}{4}$ (!,2) < (1,3)	
cu fimes		$ \frac{3}{3}$ $ \frac{3}{4}$ $(\frac{1}{2}) < (1,3)$ < (2,2) < (2,3)	
$(0,0) < (0,1) < (0,2) < (0,3) < \cdots$		$ \frac{3}{3}$ $ \frac{3}{4}$ (!,2) < (1,3)	
$(0,0) < (0,1) < (0,2) < (0,3) < \cdots$		$ \frac{3}{3}$ $ \frac{3}{4}$ $(\frac{1}{2}) < (1,3)$ < (2,2) < (2,3)	
$(0,0) < (0,1) < (0,2) < (0,3) < \cdots$		$ \frac{3}{3}$ $ \frac{3}{4}$ $(\frac{1}{2}) < (1,3)$ < (2,2) < (2,3)	
$(0,0) < (0,1) < (0,2) < (0,3) < \cdots$		$ \frac{3}{3}$ $ \frac{3}{4}$ $(\frac{1}{2}) < (1,3)$ < (2,2) < (2,3)	

For {a, : KEA} any indexed set of positive real numbers, listinct a.,..., q EA $\sum_{k \in A} \{a_k : a \in A\} = \sum_{k \in A} a_k = \sup_{k \in A} \{a_{a_1} + a_{a_2} + \cdots + a_{a_k}\}$ kzi $\sum \{1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots\} = 2$ But if A is uncountable and 9x >0 (positive reals) then Za= 00 (always diverges)! Why? In other words, if $\sum q_x < \infty$, why anot A be area area of a counterfere? i.e. there exists M real Such that $q_{r_1} + q_{r_2} + \cdots + q_{r_n} < M$ for all $k = r_1$; $v_{r_1} \cdots v_n \in A$ distinct. $\sum_{M,n\in\mathbb{Z}} \frac{1}{\binom{M+n^{n+1}}{1}}$ A = A, U Az V Az V Az V. where A les for all n $A_{i} = \left\{ a \in A : a_{a} \in [1,\infty) \right\}$ So A is a constable union of finite sets so it's constable.

Recall order topology on a totally ordered set (X, <)
Sub basic open sets { x = X : x = B } for B = X
ExeX: x>x} for xeX
Basic open sets $(x, \beta) = \{x \in X : \alpha < x < \beta\}$ including the sob-basic sets
Ordinals: well-ordered sets ordinals are the canonical above examples of well-ordered sets.
Given an ordinal Y, [0,7] = fordinals x ≤ Y }.
In T , every nonempty subset $A \subseteq [0, T]$ has a least element in A .
Also A has a supremum sup A which way or way not be an exment of .
(sup A = least upper bound for A; since & is an upper bound for A,
(sup A = least upper bound for A; since & is an upper bound for A, so Eupper bounds for A; is a nonempty subset of [0, 8] so sup A exists by well ordering).
My den overlagt.
Moreover: [0,7] is compact Hansdorff. If & # B in [0,8], wlob << B so
Case ci) & is a limit ordinal.
$\alpha \in [0, \alpha + i), \beta \in (\alpha + i, \gamma].$ Care (ii) β is a successor ordinal, $\beta = \delta + i, \alpha \leq \delta, \alpha \in [0, \alpha + i), \beta \in (\delta, \gamma].$ (ii)

Why is [o, 7] compact?	(If I is a limit ordinal	? then 7 = [0, 8)
Let O be an open cover of [0,7].	[0,7]=アッミアう	is not compact.)
A set A S [0,7] is finitely covered by () if these exist U U. E (2 such that	$A \subseteq U_1 \cup U_2 \cup \cdots \cup U_n$.	
A set $A \subseteq [0, 1]$ is finitely could by if there exist $U_1, \dots, U_n \in Q$ such that we must that $X = [0, 7]$ is finitely covered $S \subseteq [0, 7]$: $[or, 4]$ is finitely covered $S \subseteq [0, 7]$ is nonempty, since $T \in S$.	I by Q.	· · · · · · · · · · · · ·
S= g x ∈ [0, r]: [a, 4] is fritely concred	by 07. So S has a least el	enert m.
$S \subseteq [0, T]$ is nonempty, since $[m, T] \leq$ If $m = 0$ we're done. Otherwise $[m, T] \leq$	= U, v v Ua for some U	
a stradiction	A THE MUMMULITY I MIC	the state of the second st
Now $M \in \{0, 7\}$ is a limit ordinal. $M \in \mathcal{U}_0$ some basic open nobid of an i.e. $M \in (\mathcal{U}, \beta) \subseteq$ Now $M \in \mathcal{U}(\mathcal{U}, \mathcal{U}, \mathcal{U}, \mathcal{U}) \longrightarrow \mathcal{U}_0$ covers $[\alpha(+1), \beta]$	tor some 40 E V and	1. 11. 11. [[e
Now U. U.U. U.U. V VUn covers later 87.	Again at 1 ES at 1	< m confradicting
Now Up Ul, Ulz U Ulla covers [att, 8]. the minimality of m ES.	3	
		· · · · · · · · · · · · ·

Krysdin's lang points are closed then regular Tychonolf Separation Property (qc $= [0, \omega] \times [0, \omega]$ is compact Housdorff. X is normal. Tycleo-off plank But X is not completely normal (ω_1,ω) $(0,\omega)$ i.e. it has a subspace that is not normal. Delete (w, w) Warning: (d, B) can be etther an (0,2)interval or a point. (0,1)(0,0) $(\omega_1,0)$ $(\omega 2.0) (\omega 3.0)$

Delete	d Tychonoff	Plank	X = ([o	, w,] * [0, 0	J],),−, {(w,, w)} . C . Tychonoff	Plank : X	is not normal.
$(0,\omega)$			$\mathbf{T} = [0, \omega_1)$			(ω_1,ω)	K = top e L = right	edge tedge closed subspits
(0,9)					(<u>S</u> , , e	$L = \{\omega_1\} \times [0,$	Claim: We	can't find open sets KSU, LEV, UNV≠p
(0,2) (0,1)	• • • • • • •					hor	eotal lines are	copies of [0, w,]
(0,0)	(1,0)(2,0)	$(\omega,0)$	$(\omega 2, 0)$	$(\omega 3,0)$		$(\omega_1,0)$		
	(1,0)(2,0)				$\in \omega$, there is a $\xi_q = \bigcup \xi_q$ acco	minimal $\xi_a \in [0, 1]$ is contable. So	ω,) such that [ξ., [ξ.,ω,] × [0,ω) ⊆ V.	,w _t]x {ac} }⊆ Y.
Suppos	(1,0)(2,0) se V⊆X ope is countable (en, LC since Eq. <	V. For w,),	each a So sup g acw		minimal $\xi_{\alpha} \in [0, \infty]$ is contable. So		
Suppos E. Now	(1,0)(2,0) se V⊆X ope is countable (en, LC since Br <	V. For w,), fains point	each a So sup § acto k [§,a]		minimal $\xi_a \in [0, 1]$ is constable. So y close to w. (a		
Suppos E. Now	(1,0)(2,0) se VSX open is committed (KSUSX	en, LC since Br <	V. For w,), fains point	each a So sup § acto k [§,a]				
Suppos E. Now	(1,0)(2,0) se VSX open is committed (KSUSX	en, LC since Br <	V. For w,), fains point	each a So sup § acto k [§,a]				
Suppos E. Now	(1,0)(2,0) se VSX open is committed (KSUSX	en, LC since Br <	V. For w,), fains point	each a So sup § acto k [§,a]				
Suppos E. Now	(1,0)(2,0) se VSX open is committed (KSUSX	en, LC since Br <	V. For w,), fains point	each a So sup § acto k [§,a]				

what's	Next?								
	afilters								• •
	standard	Pools							• •
			· · · · · ·						
· · · · Proc	P of Ty	chonoffs	Theorem	· · · · · · ·					
	truction	of the	o Store-	Čech Compa	otification	• • • • • •	• • • • • •		• •
			~ ~ 0	· · · · · · · ·					• •
But first	t lets	review T	le reak u	mullers.					
De la maria	+0.00	struct R	from	Q is via	Dedeleind a	IS .			
Call way									
Better:	completion	, via Co	may sequ	ends.		(η · γ · · · · · · ·	
Start with	the set	of all	Canchy	ences. sequences in	n Q · X=	ξx∈Q ^ω :	st is course	y s · · · · ·	
						8= (x, x.	8-8-)	$x_i \in \mathbb{Q}$	• •
Tutroduce	an equi	valence re	lation ~	on X				it is such	
Introduce	an equi	valence re	lation ~	on X	· · · · · · · · ·	For all 2>1	> there ex	cists N such	
Introduce	an equi	valance re	lation ~	on X		For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	J
Introduce	an equi	valence re	lation ~	on X		For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	U.
Introduce	en equi	valonce re	lation ~	on X		For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	J.
Introduce	en equi	valonce re	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	J. irrji
Introduce	an equi	valonce re	lation ~	on X		For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	٧. ١, ٣) ٢٠
Tatroduce	en equi	valonce re	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	U. 177) ion
Tatroduce	en equi	valonce re	lation ~			For all 2>0 that 1x:-	There ex	cists N such	ע. ייאך) ייסי
Tetroduce	en equi	valonce ve	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	U. 177) 10-
Tatroduce	en equi	valonce re	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	٧. ١٠ ٢٢ ١٠ ٣٠
Tatroduce	en equi	valonce ve	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	J.
Tatroduce	en equi	valonce ve	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	٧. ١ ١ ١
Tatroduce	en equi	valonce re	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	۷. ۲۰۸۲) ۲۰۰۰
Tatroduce	en equi	valonce ve	lation ~			For all 2>0 that 1x:-	There ex	cists N such henever i, j > 1	٧. ١٣٣٦

Given a set X, we want to distinguish every subset $A \subseteq X$ as large $(A \in U)$ or small $(A \notin U)$. Here $U \subseteq \mathcal{P}(X)$ (collection of subsets of X) called an uttrafilter, satisfying:
Here US P(x) (collection of subsets of X) called an uttratitur, satisfying:
• $\emptyset \notin \mathcal{U}_{i}$, $X \in \mathcal{U}_{i}$, and $i \in \mathcal{I}_{i}$, $i \in \mathcal{U}_{i}$, $i \in \mathcal{I}_{i}$, $i \in $
· For every ASX, either AEU or X-AEU (but not both).
· If A f l and A S B S X then B f l.
• If $A, A' \in \mathcal{U}$ then $A \cap A' \in \mathcal{U}$.
Note: If X = A, UA, U. L. A. (note: disjoint amion) then exactly one of A, ", A. is E U.
Every nonempty set X has an ultrafithe. But we are not so interested in principal ultrafithers:
If a \in X, Un = EAEX : a EA ?. If IXI < 00 then every uttrafitter on X is principal.
SF (X(= 00 then X has many uttratiturs including lots of nonprincipal uttratiturs. But AC is required to find them. Let's "find" a nonprincipal uttratiller" on N= \$1,2,3,4,5,3.
required to find them. Let's "find" a nonprincipal uttratiller on IN= \$1,2,3,45,3.
Since 513 & U, N-313 E U. If A SN, 1A1<00 then N-A & U. Complements of finite sets
Since $513 \notin 21$, $N - 7:3 \notin 21$. If $A \subseteq N$, $(A1 < 90$ then $N - A \notin 21$. Complements of finite sets are large. What about $2N = 52, 4, 6, 8, 3$ and $2N - 1 = 51, 3, 5, 7, 9, 5$? We must chose one of these to be large and the other to be small. My choice: $2N$ is small, $2N - 1$ is large. $(N = 2N \sqcup (2N - 1))$. $N = (3N) \sqcup (3N - 2) \sqcup (3N - 1)$ My choice: $3N - 2 = 51, 4, 7, 0, 3 \notin 21$.
these to be large and the other to be small. My choice: 211 is small, 211-1 is large.
$(N = 2N \sqcup (2N-1)) \cdot N = (3N) \sqcup (3N-2) \sqcup (3N-1) My choice: 3N-2 = 71,4,7,0, \xi \in U.$
$\mathbf{\xi} \mathcal{U} \qquad \mathbf{\xi} \mathcal{U} \qquad \mathbf{\xi}$
$IN = \{1, 4, 6, 8, 9, 10, 12, 14, \dots\} \ Li \{2, 3, 5, 7, 11, 13, \dots\} \ Oace again either of these can be chosen to be "large".$
von-primes primes
I choose {2,35,7,11,13,} E Q. Note: By Dirichlet's theorem, there are infinitely many primes = 1 and 6 so the intersection of our "large" sets & infinite as required.

A fitter on X is a collection F consisting of subsets of X such that	
• Ø∉∃, X∈J	
• IF AEF and AEBEX, then BEF.	
• IF A, A'EJ then A NA'EJ.	
Every ultrafitter is a filter, but not conversely.	
A collection of subsets of X has the finite intersection property (fip.) it	
for all $A_1, \dots, A_n \in S$, $A_1 \cap A_2 \cap \dots \cap A_n \neq \emptyset$.	
A fifter has the fing. If S is any allection of subsets of X having fing. then S generates a	
fitter: = { supersets of finite intersections of sets in S ?	
fitter: $F_s = \{ supersets of finite intersections of sets in SZ$	
fitter: SF = { supersets of finite intensections of sets in SZ = { B ⊆ X : A, NA2 N NAn ⊆ B for some A, A2,, An ∈ SZ.	
fitter: Fr = { supersets of finite intersections of sets in SZ = { B S X : An Az A A An E B for some An Az,, An E SZ. This is the (anique) smallest collection of enbedte of X which contains S and is a fitter.	
fitter: Fr = { supersets of finite intersections of sets in SZ = { B S X : An Az A A An E B for some An Az,, An E SZ. This is the (anique) smallest collection of enbedte of X which contains S and is a fitter.	
fitter: Fr = { supersets of finite intersections of sets in SZ = { B S X : An Az A A An E B for some An Az,, An E SZ. This is the (anique) smallest collection of enbedte of X which contains S and is a fitter.	
fitter: Fr = { supersets of finite intersections of sets in S? = { B S X : An A2 A A An S B for some A, A2,, An E S }. This is the (anique) smallest collection of enbeets of X which contains S and is a fitter. If Fr, Fr' are fitters on X, we say Fr' refines F if Fig F. The collection of all fitters on X is partially ordered by refinement.	
fitter: Fr = { supersets of finite intersections of sets in S? = { B S X : An A2 A A An S B for some A, A2,, An E S }. This is the (anique) smallest collection of enbeets of X which contains S and is a fitter. If Fr, Fr' are fitters on X, we say Fr' refines F if Fig F. The collection of all fitters on X is partially ordered by refinement.	
fitter: Fr = { supersets of finite intersections of sets in SZ = { B S X : An Az A A An E B for some An Az,, An E SZ. This is the (anique) smallest collection of enbedte of X which contains S and is a fitter.	
fitter: Fr = { supersets of finite intersections of sets in S? = { B S X : An A2 A A An S B for some A, A2,, An E S }. This is the (anique) smallest collection of enbeets of X which contains S and is a fitter. If Fr, Fr' are fitters on X, we say Fr' refines F if Fig F. The collection of all fitters on X is partially ordered by refinement.	
fitter: Fr = { supersets of finite intersections of sets in S? = { B S X : An A2 A A An S B for some A, A2,, An E S }. This is the (anique) smallest collection of enbeets of X which contains S and is a fitter. If Fr, Fr' are fitters on X, we say Fr' refines F if Fig F. The collection of all fitters on X is partially ordered by refinement.	
fitter: Fr = { supersets of finite intersections of sets in S? = { B S X : An A2 A A An S B for some A, A2,, An E S }. This is the (anique) smallest collection of enbeets of X which contains S and is a fitter. If Fr, Fr' are fitters on X, we say Fr' refines F if Fig F. The collection of all fitters on X is partially ordered by refinement.	
fitter: Fr = { supersets of finite intersections of sets in S? = { B S X : An A2 A A An S B for some A, A2,, An E S }. This is the (anique) smallest collection of enbeets of X which contains S and is a fitter. If Fr, Fr' are fitters on X, we say Fr' refines F if Fig F. The collection of all fitters on X is partially ordered by refinement.	