

Let X be a set. A topology on X is a collection J of subsets of X (called the open sets) such that
 (i) Ø, X ∈ J (ii) J is closed under finite intersection and arbitrary union, i.e.
if u, v e J then Unve J;
if $\mathcal{U} \subseteq \mathcal{J}$ then $\mathcal{U} \mathcal{U} \in \mathcal{J}$. (So for $\mathcal{U}, \mathcal{V} \in \mathcal{J}$, $\mathcal{U} \cup \mathcal{V} \in \mathcal{J}$. If $\{\mathcal{U}_{\alpha} : \alpha \in \mathbb{I}\}$ is an indexed collection of open sets, then $\mathcal{U} \mathcal{U}_{\alpha} \in \mathcal{J}$.)
Example (standard open set) The standard topology on IR": K= R". A set U < IR" is open if Sor all ue U, there exists E>O such that
$(\mathbf{u}) \in \mathcal{U}.$ $\mathbf{B}_{\mathbf{z}}(\mathbf{u}) \in \mathcal{U}.$ $\mathbf{Here} \mathbf{B}_{\mathbf{z}}(\mathbf{u}) = \{ \mathbf{x} \in \mathbb{R}^{"} : d(\mathbf{x}, \mathbf{u}) < \mathbf{z} \}.$
In other words, a standard open set in \mathbb{R}^n is a union (the open E-bell centered at n). of open balls.

Eq. (More gaverally) Let X be any set and let S be a collection of subsets of X which over X, i.e. US = X. Then the oblection of all unions of finite intersections SinSzn. NSk , Sun, Sk & is a topology on X. The members of S are called a sub-basis for this topology and the topology is said to be generated by S. S is called a base (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds it? for all $S_{i}, S_{i} \in S_{i}$ S, Sz and all u & S. A.S. there exists SzES such that ue Sz SINSZ. Eq. let X be any set. The discrete topology on X is the collection of all subsets of X. (2*) The indiscrete topology on X is \$0, x3. If $X = \{0, 1\}$ then there are four possible topologies on $X: \{0, X\}, \{0, 10\}, \{1\}, X\}, \{0, 10\}, X\}, \{0, 10\}, X\}.$

	of confloments of finite sets, and Ø
	A= {xeX : x & A}. et difference
This is a topology on X, called the finite complement topology.	X-A, X-A, X\A
A <u>topological space</u> is a pair (X, J) where T is a topological space	Ø, Ø, Ø, O
J is a topology on a set X . Note: $UJ = X$. By abuse of language, we obtain	n say that X is a topological
space. Let X be a set. A distance function (or netric)	, on X is a function
Let χ be a set. A distance function (or nettric) $d: \chi * \chi \rightarrow [0, \infty]$ such that for all x, y, z d(x, y) = d(y, x)	ε∈ Χ,
$d(x,y) \ge 0$ and equality bolds iff $x = y$. $d(x,z) \le d(x,y) + d(y,z)$	
The standard topology on R" is a matric topology.	
The metric $d_2(x_{rg}) = \sqrt{(x_r - y_i)^2 + \dots + (x_n - y_n)^2}$ (the End $d_1(x_{rg}) = x_i - y_i + \dots + x_n - y_n $ $d_{\infty}(x_{rg}) = \max \{ S(x_r - y_i), \dots, x_n - y_n \}$	dlean metric) all give the standard topology on R ⁿ .

In R?, open halls with aspect to dr. A., do look like These three motorics, define the same topology. Mitty Marine Mar The metric $d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$ defines the discrete topology. A topological space is metricable if its topology can be given by some matric. (not uniquely however) If X is an infinite set, then its finite condemnate topology is not watricable. A topology is Hausdorff if for any two points $x \neq y$, there exist open sets U, V such that $x \in U$, $y \in V$, $(\cdot, \cdot) = (\cdot, \cdot)$ $U \cap V = \emptyset$. Every metric space is Hausdorff since if $x \neq y$, d = d(x,y) > 0. Take $U = B_{S_{1}}(x)$, $V = B_{S_{1}}(y)$

An open neighbourhood of a point x ∈ X is an open set containing x.
An open neighbourhood of a point $x \in X$ is an open set containing x . Nobbed A basic open mobiled of a point $x \in X$ is an open nobbel of x which is basic (i.e. it's in the basis). Even metric space can be rother surprising.
Λ Consider $X = Q$. A norm on Q is a function $Q \rightarrow [0,\infty)$,
$x \mapsto x \text{satisfying}$ (i) $ x \neq 0$; equalify holds iff $x=0$. (ii) $ x = x \cdot y $.
$(\ddot{u}) x + y \le x + y .$
trom any norm on W, we obtain a metric $d(x,y) = x-y $. One way to do this is with the unal absolute value $ x = x = x _{\infty} = \begin{cases} x & , if x > 0; \\ -x, & if x < 0. \end{cases}$ This gives the standard to pology on Q.
An atternative is: given $x \in \mathbb{O}$, if $x=0$ define $ 0 _2 = 0$. If $x \neq 0$, write $x = 2^{k} \frac{a}{b}$, $a, b, k \in \mathbb{Z}$, $b \neq 0$; $a, b \neq dd$. Then define $ x _2 = 2^{k}$. This is the 2-adic norm on \mathbb{R} . In fact it satisfies a stronger form of (iii), the ultrametric inequality $ x+y \leq \max \{ x , y \} \leq x + y $.

$\Sigma.g. \ \widetilde{\widetilde{a}} + \widetilde{f}_{4}\ _{2} =$	$\left\ \frac{40+15}{42}\right\ _{2} = \left\ \frac{55}{42}\right\ _{2} = 2$	$= \max \{ \ \frac{1}{2i} \ _{2} \}$	$\left(\begin{array}{c} 5\\ 1\\ 1\\ 1\\ 1\end{array}\right) = 2$	
$\left\ \frac{20}{2!}\right\ _{2}^{2} = \frac{1}{4}$		$pare: \ \frac{20}{24}\ _{2}^{\frac{1}{4}} \ \frac{5}{14}\ _{2}^{\frac{1}{4}}$	~ 24 =	225.
A basic open nobled of $B_{\epsilon}(0) = \{x \in \mathbb{Q} \mid x \in \mathbb{Q} \mid x \in \mathbb{Q} : x \in \mathbb{Q} \}$	$f = 2000 \ looks \ like$: $\ x\ _{2} < \varepsilon \ $ $\ x\ _{2} < 1 \ $ = $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $	(e7 a ever)	dd 3	· · · · · · · · · · · ·
	hall is a centre of the	ball ie. if ce	B, (0) then	B ₁ (c) = B ₁ (o). Some
an a				
$d(x,z) = \ x-z\ _{2}$	Then two of the side length, i.e. the -	riangle is isoscelle	•••	
$d(x,z) \qquad (y-z _{z}) = x-z _{z}$				
$d(x,z) = \ x-z\ _{2}$	length, i.e. the $\frac{1}{2}$			

•	• •		+ :	2 +	4	•	8	+-	16	+	32	.+	6	4 -	f -	• •		:	-		•	• •				0		• •		•			•								
•	۲ ۲	t.e	• •	Da	Li	ak	Ś	-	~3	•	1		3,	7	, . , (5,	31	, . , .(3		•	• •	Co	mV	eng	R	์ า	0	-1	•	in	the	2	- a	di	<u> </u>	n	su.		 •	•
•			• •	(÷					•						•	1	• •			•		• •					•	• •			• •										
	• •		• •														• •														• •										
•	• •		• •							•		• •					• •	•				• •					•	• •			• •				•						•
•	• •		• •		•				•	•	•	• •				•	• •	•				• •				•	•	• •		•	• •	•			•				•	 •	•
•	• •		• •		•	• •				•		• •				•	• •					• •				•	•	• •			• •	•			•				•	 •	•
	• •		• •		•	• •				•		• •				•	• •	•				• •				•	•	• •			• •	•			•				•		*
•			• •	•	•				•	•		• •				•	• •	•				• •		•		•		• •	•		• •									 •	
•			• •														• •					• •					•				• •	•									
	• •		• •														• •														• •										
	• •		• •									• •					• •					• •						• •			• •				•						•
	• •		• •		•		•			•	•	• •				•	• •	•				• •				•	•	• •		•	• •	•			•					 •	•
	• •		• •		•	• •				•	•	• •				•	• •	•				• •				•	•	• •			• •				•				•	 •	•
	• •			•					•	•							•					• •					•	• •	•	•	• •				•				•		•
•	• •	•	• •		•	•			1	•	•	• •				•	•	•		•		•				•	•	•			•				•				• •		
•	• •	• •	• •									• •					• •					• •					•	• •			• •				•						
		•	• •			• •						• •					• •			•		•					0	•			• •										