

Fg. (More generally) Let ✗ be any set and lets be ^a collection of subsets of ✗ which cover ✗ , i.e. Us ⁼ ✗ . Then the collection of all unions of finite intersections $s_i \cap S_2 \cap \cdots \cap S_k$, $S_i \cap S_k \in S$ is a topology on ✗ . The members of S are called ^a sub . basis for this topology and the topology is said to be generated by S. S is called a <u>base</u> (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds if for all S_{1} , S_{2} \in S_{1} S_{s} S_{t} and all $u \in S_{t} \cap S_{z}$ there exists $S_{3} \in S_{3}$ such that Eg. Let ✗ be any set . $u \in S_3 \subseteq S_1 \cap S_2$. on X is the collection of all subsets of X . (2^x) The indiscrete topology on X is { Ø, x }. If $X = \{0, 1\}$ then there are four possible topologies on $X := \{0, X\}$, $\{0, 80\}$, $\{1\}$, $X\}$, $\{ \phi, \{\circ\}, \chi \}$, $\{ \phi, \{\circ\}, \chi \}$.

In R², open halls with aspect to de, A,, do look like r
iv ;
|
|
|
|

 respectively . $\frac{1}{\sqrt{2}}$. $\frac{1}{\sqrt{2}}$ **in. 1999** The metric d(xg)= $\begin{cases} 0, & \text{if } n \geq 0, \text{if } n = 1, & \text{if } n$ if ✗ =J defines the discrete topology . $\int f \cdot x + y$ ^A topological space is metrizable if its topology can be given by some metric . (not uniquely however) If X is an infinite set, then its finite complement topology is not wertizable.