

Let X be a set. A topology on X is a collection J of subsets of X (called the open sets) such that
 (i) Ø, X ∈ J (ii) J is closed under finite intersection and arbitrary union, i.e.
if u, v e J then Unve J;
if $\mathcal{U} \subseteq \mathcal{J}$ then $\mathcal{U} \mathcal{U} \in \mathcal{J}$. (So for $\mathcal{U}, \mathcal{V} \in \mathcal{J}$, $\mathcal{U} \cup \mathcal{V} \in \mathcal{J}$. If $\{\mathcal{U}_{\alpha} : \alpha \in \mathbb{I}\}$ is an indexed collection of open sets, then $\mathcal{U} \mathcal{U}_{\alpha} \in \mathcal{J}$.)
Example (standard open set) The standard topology on IR": K= R". A set U < IR" is open if Sor all ue U, there exists E>O such that
$(\mathbf{u}) \in \mathcal{U}.$ $\mathbf{B}_{\mathbf{z}}(\mathbf{u}) \in \mathcal{U}.$ $\mathbf{Here} \mathbf{B}_{\mathbf{z}}(\mathbf{u}) = \{ \mathbf{x} \in \mathbb{R}^{"} : d(\mathbf{x}, \mathbf{u}) < \mathbf{z} \}.$
In other words, a standard open set in \mathbb{R}^n is a union (the open E-bell centered at n). of open balls.

Eq. (More gaverally) Let X be any set and let S be a collection of subsets of X which over X, i.e. US = X. Then the oblection of all unions of finite intersections SinSzn. NSk , Sun, Sk & is a topology on X. The members of S are called a sub-basis for this topology and the topology is said to be generated by S. S is called a base (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds it? for all $S_{i}, S_{i} \in S_{i}$ S, Sz and all u & S. A.S. there exists SzES such that ue Sz SINSZ. Eq. let X be any set. The discrete topology on X is the collection of all subsets of X. (2*) The indiscrete topology on X is \$0, x3. If $X = \{0, 1\}$ then there are four possible topologies on $X: \{0, X\}, \{0, 10\}, \{1\}, X\}, \{0, 10\}, X\}, \{0, 10\}, X\}.$

	of confloments of finite sets, and Ø
	A= {xeX : x & A}. et difference
This is a topology on X, called the finite complement topology.	X-A, X-A, X\A
A <u>topological space</u> is a pair (X, J) where T is a topological space	Ø, Ø, Ø, O
J is a topology on a set X . Note: $UJ = X$. By abuse of language, we obtain	n say that X is a topological
space. Let X be a set. A distance function (or netric)	, on X is a function
Let χ be a set. A distance function (or nettric) $d: \chi * \chi \rightarrow [0, \infty]$ such that for all x, y, z d(x, y) = d(y, x)	ε∈ Χ,
$d(x,y) \ge 0$ and equality bolds iff $x = y$. $d(x,z) \le d(x,y) + d(y,z)$	
The standard topology on R" is a matric topology.	
The metric $d_2(x_{rg}) = \sqrt{(x_r - y_i)^2 + \dots + (x_n - y_n)^2}$ (the End $d_1(x_{rg}) = x_i - y_i + \dots + x_n - y_n $ $d_{\infty}(x_{rg}) = \max \{ S(x_r - y_i), \dots, x_n - y_n \}$	dlean metric) all give the standard topology on R ⁿ .

In R?, open halls with aspect to dr. d., do look like Mitzi Mis Mitzi respectively. The metric $d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$ defines the discrete topology. A topological space is metricable if its topology can be given by some metric. (not uniquely however) If X is an infinite set, then its finite conglament topology is not wetricable.