

Let X be a set. A topology on X is a collection J of subsets of X (called the open sets) such that
(i) Ø, X e J (ii) J is closed under finite intersection and arbitrary union, i.e.
and a second sife a U,V e of Santhen a Un VE Ja; a second second second second second second second second second
if $\mathcal{U} \subseteq \mathcal{J}$ then $\mathcal{U} \mathcal{U} \in \mathcal{J}$. (So for $\mathcal{U}, \mathcal{V} \in \mathcal{J}$, $\mathcal{U} \cup \mathcal{V} \in \mathcal{J}$. If $\{\mathcal{U}_{\alpha} : \alpha \in \mathbb{I}\}$ is an indexed collection of open sets, then $\mathcal{U} \mathcal{U}_{\alpha} \in \mathcal{J}$.)
Example (standard open set) The standard topology on IR": X= R". A set U < IR" is open if Sor all ue U, there exists E>O such that
$(\mathbf{w}) = \{\mathbf{x} \in \mathbb{R}^{n}: d(\mathbf{x}, u) < \varepsilon\}.$ Here $\mathbf{B}_{\varepsilon}(u) = \{\mathbf{x} \in \mathbb{R}^{n}: d(\mathbf{x}, u) < \varepsilon\}.$
In other words, a standard open set in \mathbb{R}^n is a union (the open E-bell centered at n). of open balls.

Eq. (More gaverally) Let X be any set and let S be a collection of subsets of X which over X, i.e. US = X. Then the oblection of all unions of finite intersections SinSzn. NSk , Sun, Sk & is a topology on X. The members of S are called a sub-basis for this topology and the topology is said to be generated by S. S is called a base (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds it? for all $S_{i}, S_{i} \in S_{i}$ S, Sz and all u & S. A.S. there exists SzES such that ue Sz SINSZ. Eq. let X be any set. The discrete topology on X is the collection of all subsets of X. (2*) The indiscrete topology on X is \$0, x3. If $X = \{0, 1\}$ then there are four possible topologies on $X: \{0, X\}, \{0, 10\}, \{1\}, X\}, \{0, 10\}, X\}, \{0, 10\}, X\}.$

	of confloments of finite sets, and Ø
	A= {xeX : x & A}. et difference
This is a topology on X, called the finite complement topology.	X-A, X-A, X\A
A <u>topological space</u> is a pair (X, J) where T is a topological space	Ø, Ø, Ø, O
J is a topology on a set X . Note: $UJ = X$. By abuse of language, we obtain	n say that X is a topological
space. Let X be a set. A distance function (or netric)	, on X is a function
Let χ be a set. A distance function (or nettric) $d: \chi * \chi \rightarrow [0, \infty]$ such that for all x, y, z d(x, y) = d(y, x)	e∈ X,
$d(x,y) \ge 0$ and equality bolds iff $x = y$. $d(x,z) \le d(x,y) + d(y,z)$	
The standard topology on R" is a matric topology.	
The metric $d_2(x_{rg}) = \sqrt{(x_r - y_i)^2 + \dots + (x_n - y_n)^2}$ (the End $d_1(x_{rg}) = x_i - y_i + \dots + x_n - y_n $ $d_{\infty}(x_{rg}) = \max \{ S(x_r - y_i), \dots, x_n - y_n \}$	dlean wetric) all give the standard topology on R ⁿ .

In R?, open halls with aspect to dr. A., do look like These three motorics, define the same topology. Mitty Marine Mar The metric $d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$ defines the discrete topology. A topological space is metricable if its topology can be given by some matric. (not uniquely however) If X is an infinite set, then its finite condemnate topology is not watricable. A topology is Hausdorff if for any two points $x \neq y$, there exist open sets U, V such that $x \in U$, $y \in V$, $(\cdot, \cdot) = (\cdot, \cdot)$ $U \cap V = \emptyset$. Every metric space is Hausdorff since if $x \neq y$, d = d(x,y) > 0. Take $U = B_{S_{1}}(x)$, $V = B_{S_{1}}(y)$

An open neighbourhood of a point x ∈ X is an open set containing x.
An open neighbourhood of a point $x \in X$ is an open set containing x . Nobbed A basic open mobiled of a point $x \in X$ is an open nobbel of x which is basic (i.e. it's in the basis). Even metric space can be rother surprising.
Λ Consider $X = Q$. A norm on Q is a function $Q \rightarrow [0,\infty)$,
$x \mapsto x \text{satisfying}$ (i) $ x \neq 0$; equalify holds iff $x=0$. (ii) $ x = x \cdot y $.
$(\ddot{u}) x + y \le x + y .$
trom any norm on W, we obtain a metric $d(x,y) = x-y $. One way to do this is with the unal absolute value $ x = x = x _{\infty} = \begin{cases} x & , if x > 0; \\ -x, & if x < 0. \end{cases}$ This gives the standard to pology on Q.
An atternative is : given $x \in \mathbb{Q}$, if $x=0$ define $\ 0\ _2 = 0$. If $x \neq 0$, write $x = 2^k \frac{a}{4}$, $a_i b_i k \in \mathbb{Z}$, $b \neq 0$; $a_i b_i dd_i$. Then define $\ x\ _2 = 2^k$. This is the 2-adic norm on \mathbb{R} . In fact it satisfies a stronger form of (iii), the ultrametric inequality $\ x+y\ \leq \max \ x\ $, $\ y\ \leq \ x\ + \ y\ $.
$\ (x+y)\ \ge \max \{ x+y \le \max \{ x , \ y\ \le \ x\ + \ y\ .$

$\Sigma.g. \ \tilde{z}^{+}_{1}+\tilde{f}_{1}\ _{2}^{-5}$	$\left\ \frac{40+15}{42}\right\ _{2}^{2} = \left\ \frac{55}{42}\right\ _{2}^{2} = 2.$	$= \max \frac{3}{2(2)} \left\ \frac{2}{2} \right\ _{2}$	$\left(\frac{5}{14}\right)^{2}$ = 2	
$\left\ \frac{20}{21}\right\ _{2}^{2}=\frac{1}{4},$	Comp	$Ae: \ \frac{20}{24}\ _{2}^{+} \ \frac{5}{14}\ _{2}^{-}$	$\sim 2^{\perp}$	2.25.
A basic open while σ $B_{\varepsilon}(0) = \{x \in \mathbb{Q} \mid \\ \mathbb{P}(0) = \{x \in \mathbb{Q} \mid \\ \mathbb{P}(0) = \{x \in \mathbb{Q} \mid \\ \mathbb{P}(0) \in \mathbb{Q} \}$	$\frac{2}{2} = \frac{2}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} = \frac{1}{2} $	ET a ever	dd 3	
	hall is a centre of the Then two of the sides length, i.e. the tri	ball ie. if ce	B, (0) then	B ₁ (c) = B ₁ (o). Some
	length is the tri			
$d(x,z) = \ x-z\ _{2}$	2	ingle is no see	• • • • • • • •	· · · · · · · · · · ·
$a(\mathbf{r}, \varepsilon) \qquad (\mathbf{y} - \mathbf{z} _{\mathbf{z}})$				
$a(\mathbf{r}, \mathbf{z}) (\mathbf{y} - \mathbf{z} _{\mathbf{z}})$	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{1629} \end{array} $			

1+2+4+8+16+32+64+--- = -1 The partial suns 1, 3, 7, 15, 31, 63, ... converge to -1 in the 2-adic norm. Note: If $(x_n)_n$ is a sequence of points in a top. pace X, we say $(x_n)_n$ <u>converges</u> to $x \in X$ if for every open noted U of π , $x_n \in U$ for all a sufficient large. (This means: for all U open noted) $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$ $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$ $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$ $(x_n \cdot x_n \in U$ $(x_n \cdot x_n \in U$ $(x_n \cdot x_n \cdot x$ In place of arbitrary open ublds of x, it suffices to check basic open ublds. For metric topology, it suffices to check open balls. In this case, $\pi_n \rightarrow \chi$ provided that for all $\epsilon > 0$, there exists N such that i.e. $d(x_n, x) < \varepsilon$ whenever n > N. In our example above, $d(x_n, x) = 2^n \rightarrow 0$ as $n \rightarrow \infty$. $\|2^n\| = \frac{1}{2^n} \rightarrow O \quad ao \quad n \rightarrow \infty.$ Find the inverse of 5 mod 64.

In \mathbb{Z}_{672} , $\frac{1}{5} = \frac{1}{1+9} = 1-4+16-64$ = $1-4+16$ = 15.	+ 256 -1029 + Eero
Eq. in Z with the finite complement converges. It converges to 22.	topology, the sequence $(n) = (1, 2, 3,)$
$(n)_n \rightarrow 22.$	In fact for every $a \in \mathbb{Z}$, $(a)_n \rightarrow a$.
	Theorem IF X is Hausdorff, then every sequence in X has at most one limit. (it converges to at most one point.)
	5 Proof Suppose att in a Hausdorff space X where a sequence (xin) - 7 a
1, 13, 25, 84 Here pick as max [N. N. ? 1	and (rin) = 6. cubbs as pin open and (rin) = 6. cubbs as pin open which is the second of a b There exists N, such that respectively. rine U for all n > N; also Nz such that xne V for all n > Nz.
then pick as max [Ni, Nz] to obtain a contradiction.	Ane U for all n>N; also Nz such that Xne V for all n>Nz.

we p in g	prefer to u eneral.	nite $(x_n) \rightarrow c$	g rather th	ran lien Ru = 9 n-700	· · · · · · · · · · · · ·
Ø.X	are closed			unts of open sets.	· ·
If K, Arbit	K' are closed	then KUK' is ions of closed set	closed. (So Sid 3 are closed.	rite unions of close	d sets are closed.)
De Mo	organ laws:	$X - (U A_{e}) =$	() (X-Aa) Kei	· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · ·
	· · · · · · · · · ·	$X \sim (A_{e}) = a_{eI}$			· · · · · · · · · · · · ·
Given a the	n infinite set	and X itself.	mplement topolo	gy has as its cl	osed cets
Let i small	X be a to	p. space. Given it containing A	$A \subseteq X$, the i.e. $\overline{A} = \bigcap^{n}$	Closure of A is $K \subseteq X : K closed,$	the (unique) $K \ge A_{2}^{2}$.
The int A°	erior of A = U {US	is the largest A: U open in X	open set contain (X-A) =	et in A, i.e. $X - \overline{A}$; $X - \overline{A} =$	X ~ A° .

Theorem There are infinitely many primes. Known proofs: Euclid's proof (elementary) Euler's proof (analytic proof: 27 diverges) This proof is topological. Proof form a topology on X=Z whose basic open sets are the arithmetic progressing ..., -6, -1, 4, 9, 14, 19, ... for example. ...-6,-1, 9, 14, 19, ... for example. Every nonempty open set is infinite. Suppose there are only finitely many primes : (PI < 00 is the set of all primes {-1, 13 = {a e I : a is not divisible by any prime }. = A fack: a is not divisible by p } $U_{a,p} = \{ x \in \mathbb{Z} : x \equiv a \\ modp \}$ (U, U U, U U, U U U, P, P) is open. However it has only 2 elements, a contradiction More generally, let G be a group. Consider the topologn on G whose basic open sets are cosets of subgroups $H \leq G$ of finite index, i.e. $gH = [gh: heH], [G: H] < \infty$.

T2: Hausdorff \odot \odot T1: Points are closed i y T₁: Points are closed (i) 'y If x∈ X and y≠ x, then there is an open nlobed U of x with y ∉ U. T₂ ⇒ T₁. Exercise: Give an example of a top. space voluch is T₁ but not Tz. One answer: the finite complement topology for an infinite set. Let $f: X \rightarrow Y$ be any function. For any $B \subseteq Y$, the preimage of B in Xunder f is $f'(B) = \{x \in X : f(x) \in B\}$. Similarly, if $A \subseteq X$, the image of A in Y is $f(A) = \{f(a) : a \in A\}$. In general $f(f(A)) \subseteq A \subseteq f'(f(A))$ Now let X and Y be top. spaces, i.e. (X, J) and (Y, J'). A function $f: X \rightarrow Y$ is continuous if the preimage of every open set (in Y) is open (in X); i.e. for every $U \subseteq Y$ open, $f'(U) \subseteq X$ is open. Exercise: Convince yourself that the "standard" definition of continuity for functions R" > R" is just a special case of this. (for the standard topologies on R and R).

Theorem If f: X -> Y and g: Y -> Z are continuous, so is gof: X -> Z. Proof If $U \subseteq Z$ is open then $g'(U) \subseteq Y$ is open so $f(g'(u)) \subseteq X$ is open. when are two topological spaces X, Y "the same"? $(X \simeq Y : X, Y \text{ are homeonophic$ $This means there is a bijection <math>X \rightarrow Y$ taking one topology to the other. I.e. there is a bijection $f: X \rightarrow Y$ such that f, f are continuous. Eq. X is R with the standard topology; Y is R with the finite complement topology; Z. K. IR with the discrete topology; W is R with the indiscrete topology {Ø, R} $Z \xrightarrow{\iota} X \xrightarrow{\iota} Y \xrightarrow{\iota} W$ where $\iota(x) = x$. If J, J are two topologies on X, we say finist coarsest topology topology J' is finer than J if J'7J on IR (J' is a refinement of J) (J' is coarser than J if J'C J Eq. The finite complement topology (J' is coarser than J if JC J on X is the coarsest topology for which points are closed.

i.e. any topology in which points are closed is a refinement of the finite complement topology.
Subspace Topology Let $A \subseteq X$ where X is a topological space $X = (X, J)$. The topology A inherits from X in the most noticed way is the subspace topology $J_A = \{U \cap A : U \in J\}$.
Eq. $(0,1) = \{a \in \mathbb{R}: 0 \le a \le 1\}$ is neither open nor closed in \mathbb{R} but it is closed in $[0,1]$ and in $[0,\infty)$ since $[0,1) = (-1,1) \cap [0,1] = (-1,1) \cap [0,\infty)$.
If f: A -> R ^m where $A \subseteq R^n$ we say f is continuous if it is continuous relative to the standard topology of R ^m and the subspace topology on $A \subseteq R^n$.
· · · · · · · · · · · · · · · · · · ·

 $f: R \rightarrow R$ Eg. not continuous Continuosa $f: (-\infty, 0) \cup (0, \infty) \rightarrow \mathbb{R}$ If f: A -> R^m has f(A) EB we might as well think of f as f: A -> B. To say f: A -> R" is continuous is equivalent to saying f: A -> B is continuous. Suppose $f: A \rightarrow B$ is continuous and let $U \subseteq \mathbb{R}^m$. Then $f'(u) = f'(u \cap B)$ is open in A. Similarly one proves Similarly one proves the converse. Given $A \subseteq X$ where X is a top. space, there is an inclusion map $\iota: A \longrightarrow X$ $\iota(a) = a$. (one-to-one; not onto in general). The subspace topology on A is the coarsest topology for which the inclusion map ι is continuous.

Given USX open, i'(U) = UNA $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ AU (BnC) = (AUB) n (AUC) Quotient Topology Suppose f: X->Y is onto. Given a topology on X = (X, J) the most natural way this gives a topology on Y is by taking the finest topology on Y for which f is continuous. X A Möbius strip The quotient There are three ways to think of this situation. (i) Identify (collapse) certain points of X together (ii) We have an equivalence relation on X. topology on Y is the firlst fopology on Y map f: X-> Y is continuous. (() A partition of X.

The topology on Y= X/f {V⊆Y: f(V) is open in X}. w X/~ To show this is a topology, use $\bigcup_{\alpha} f(A_{\alpha}) = f(\bigcup_{\alpha} A_{\alpha})$ $\bigcap_{\alpha} f(A_{\alpha}) \ge f(\bigcap_{\alpha} A_{\alpha})$ $\bigcup \tilde{f}(A_{\alpha}) = f(\bigcup A_{\alpha})$ $\bigcap_{\alpha} f(A_{\alpha}) = f(\bigcap_{\alpha} A_{\alpha})$ $\operatorname{Sin}\left((-\infty,0)\cap(0,\infty)\right) = \operatorname{Sin} \emptyset = \emptyset$ $Sin((-\infty, \overline{0})) = (-1, 1)$ $Sin((-\infty,0) \cup (0,\infty)) = [-1,1]$ $\sin((0,0)) = [-1,1]$

(closed) annulus 1/// A ~ (i) closed disk ×1/14 ~ Möbius strip No two of the examples lested here are homeomorphic the is torus Klein bottle not embeddable in p3 -Una PTR = real projective plane identify (1/1/ lean S' (2. sphere)

boundary ~ S! boundary= S In R³ consider the following two subspaces Is X ~Y ? Yes. S = n-sphere \simeq unit sphere in $\mathbb{R}^{n+1} = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : \geq x_i = 1\}$ S'= $S^2 = (I_1) \qquad S^3 = R^3 v \{\infty\}$

ℝ ∾ ((0, 1) ~ (9,6) ~ for (open interval)	, ⁰⁰⁾ a < 6			· · · · · · · · ·
	uple of a homeonst	phish f: R	→ (0,00) is	f(x) = - +	<u>e*</u> · e *
	$\left(\left[0, 1 \right] \right) = \left(\left[0, 1 \right] \right)$	luy is (0,1) #		····································	
(0, 2) U (1)	more any point of [0,1) which has 2,1) is disconvected	a point U m Since it is a	a disjoint curia	of two ogen	sets.
Det . A nonempty In other . (clopen	top. space X is open sets in X. words, X is conne means both open	If X is w ited its and closed)	of disconnected, only clopen set	then it is at a contract of the server of	are Connected. 2nd X

[0,1] is connected. This is a theorem in analysis. Outline of argument: Suppose $[0,1] = U \sqcup V$ where U, V are nonempty open. $0 \in U$ without loss of generality. So $[0, \varepsilon) \subseteq U$ for some $\varepsilon > 0$. How large can ε be? $\{ \epsilon : [0, \epsilon) \subseteq U \}$ is a nonempty set with upper bound 1 So there is a least upper bound. (supremum) Is this supremum in U or in V? Either way leads to a contradiction. If we remove any point from (0,1) ~ RUR which is disconnected. This is not true for [0,1). Q is disconcerted (in the standard topology in IR) $Q = U \sqcup V$ where $U = \{x \in Q : \dots x < \sqrt{2}\} = Q \cap (-\infty, \sqrt{2})$ $V = [x \in Q: \dots x > \sqrt{2}] = Q \cap (\sqrt{2}, \infty)$ Q is totally disconnected:

An <u>i-terval</u> in R is the same thing as a connected subset of R.
Theorem R is connected
we'll talk about the foundations of IR a title lates, including completeness.
Theseen A continuous image of a connected space is connected.
These A continuous image of a connected space is connected. In other words if f: X -> Y is Surjective and X is connected, the Y is connected.
Abol Suppose Y= U WV where U, V S Y are open. Then X = f(u) Wf(v)
where f(u) f(v) are open in X. So one of these, say f(u) is empty.
where $f(u)$, $f(v)$ are open in X. So one of these, say $f'(u)$, is empty. So $U = \emptyset$. This means Y is connected.
In a video I sent you, we showed IR is connected.
Corollary $[0,1]$ is connected. Define $g: \mathbb{R} \rightarrow [0,1]$ which is a continuous surjection.
which is a continuous surjection.
Definition A path from x to y in X is a continuous () function Y: [0,1] -> X such that Y(0)=x Y(1) = y.
X is path-connected if for any x, y \in X, there is a path from x to y in X.

Theorem IF X is path-connected then X is connected. Proof Suppose $X = U \sqcup V$ where $U, V \subseteq X$ are moneurgity open. Let $x \in U$, $g \in V$. If X is path connected there is a path $T: [0,1] \to X$ with Y(0) = T, T(1) = Y. Then $[0,1] = \gamma(u) \sqcup \gamma(v) = \gamma(x)$, a contradiction since [0,1] is connected and T(U), T(V) are disjoint nonempty open. The converse of the theorem is false. An example of a space that is connected but not path-connected : XCR X= Z(x, sin x): x≠ 0Z U ([o]×[-1,1]) Details: See Munkres. Let Y, Y be two paths in X from interval on y-axis (x x = 1, x = 1, y) x = 1, y = 1, y = 1, y x = 1, y = 1, y = 1, y x = 1, y $\gamma(0) = \gamma(0) = \chi$, $\gamma(1) = \gamma'(1) = \gamma$. Then T, Y' are homotopic if

there is a map $[0,1] \times [0,1] \longrightarrow X$ $\gamma_{(t)} = \gamma_{o}(t)$ 7 y $(s,t) \mapsto \gamma_{s}(t)$ Y(t)= 7,(+) such that $\gamma_s(o) = \pi$, $\gamma_s(i) = \gamma$ for all $s \in [0, 1]$ $\gamma(t) = \gamma(t)$ for all $t \in [0, 1]$. $\gamma(t) = \gamma'(t)$ We think of $\gamma'_{5}(t)$ as a "continuous deformation" from T(t) to T(t). (homotopy) A closed curve based at $x \in X$ is a curve from x to x. The null curve based at $x \in X$ is the curve $[0,1] \longrightarrow \{x\}$. is homotopic to a will curve, then IF every closed curve in K X is simply connected. So this is not homeonoghing Eg. () is connected but not simply connected. annulus to a closed kisk ().

We say x -> x < X if for every open which Let (Xm) , be a sequence in X U of x in X, beyond some point in the sequence all remaining terms are in U i.e. there excists N such that xn E U whenever a > N. (We say xn E U for all sufficiently large n, i.e. xn EU stenever n >> 1.) (x_1, x_2, x_3, \cdots) The full definition of x -> x is . For every open which it of x in X, there exists N such that $x_n \in U$ sherever n > N. Theorem Let f: X -> Y be continuous where X, Y are top. spaces. If Mur x in X then f(x_) -> f(x) in Y. Tre X = X = K + . f(x) f(x) + f(x) Y Proof Let V be an open nobled of f(x) in Y. Let U = f'(V) which is open in X since f is continuous. Note that $x \in U$. There exists N such that So $f(x_n) \in V$ for all n > N. The U for all n>N.

Is the converse true? Namely if f: X->Y maps convergent sequences to convergent sequences, does this mean f is continuous? In other words, suppose $f: X \rightarrow Y$ such that whenever $x_n \rightarrow x$ in X, we have $f(x_n) \rightarrow f(x)$ in Y. Must f be continuous? Yes for metrizable spaces; no in general. Metrizable spaces are first countable : there is a countable basis of open nobles at every point. Given $a \in X$ where X is a metric space, B_E(q) = {x \in X : d(x, a) < E } is a collection of basic open ablids at a There are unconstably many of these. The open nords B, (a) (n=1,2,3,...) suffice for doing to pology. $X_n \rightarrow X$ iff for all $m \ge 1$ there exists N such that $x_n \in B_1(x)$ for all $X_n \rightarrow X$ iff for all $m \ge 1$ there exists N such that $x_n \in B_1(x)$ for all $n \ge N$. The balls $B_1(a)$, $a \in X$ generate all the open sets as a basis. $m \ge 1$ First comtability of a top space says that we have a comtable collection of basic open ublids at each point (a local condition). Metric spaces are first comtable. Rⁿ has a stronger property: it is second contable meaning it has a countable basis for the entire topology { B₁ (a) : a ∈ Rⁿ Z.

Theorem for first comtable spaces, a function is continuous iff it maps convergent sequences to convergent sequences. This is an inevitable result of the fact that sequences are inhorently conntable. Remark: Second contability is strictly stronger than first constability. Beyond comtable : Ordinals $\{\phi, \{\phi\}\} = 2$ $\int_{-1}^{\infty} = \{\phi, 1\} = 2 = 0, 1, 2, 3, \dots, 3$ $\psi = \{\phi, 1\} = 0, 1, 2, 3, \dots, 3$ $\psi = \{\phi, 1\} = 0, 1, 2, 3, \dots, 3$ Recursive construction: Each ordinal is the set of all the smaller ordinals. A ordered <u>set</u> (S, <) is a set S with a binary relation 's' on S sotisfying • Given x, y \in S, exactly one of the state ments x < y, x = y, y < x is true ("trickotomy property"); If x < y < z then x < z ("transitivity"). A well-ordered set is a totally ordered set in which every nonempty subset has a least dement. Eq. for the usual order, (N, <) is well-ordered; (Z, <) is not [0, 0) is not well-ordered.

Every well-ordered set is order-isomorphic to a unique ordinal. So the ordinals are the camonical representatives of the well-ordered sets. Well ordered sets are exactly the sets on which we can do induction. Every set an be not ordered (the well-ordering principle). In ZEC : Zermeles-Fraendel + Axion of Choice, the Well-Ordering Principle is a theorem. So is Zorn's Lemma. In ZF, the following are equivalent: · Axion Choice Well Ordening Principle · Zorn's lemma Transfinite Induction Copy of Copy of (x, <) (B, <) If a and B are ordiacts, then

$ \begin{array}{c c} 1 \\ 1 \\ 1 \\ 2 \\ 1 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2 \\ 2$	$ \begin{array}{c} \omega^{2} + \omega^{2} + 2\omega \\ H P P P P P \\ H P P P P P \\ H P P P P P P P P P P P P $	· · ·
· · · · · · · · · · · · · · · · · · ·	$= \omega^2 \qquad \omega^$	
cu2 = w + w	= fivst uncontable ordinal	• •
$2\omega = \omega$		R
$\omega = \omega_{\rm c}$	The order topology on an ordinal λ (β,00) CT has subbassis {x < x : x < λ} for each x < λ {x > β : x < λξ ···· β < λ	2
$ \omega_{\alpha} = F_{\alpha}$		
	Eq. $\{x \in \lambda : \beta < x < \alpha\} = (\beta, \alpha)$	
Eq. $\omega + 1 = \{0, 1, 2, \dots, \{0, 0\}\}$	Les open sets (p, α) $(p, \alpha \in \omega + 1)$ $[0, \alpha) = \{x \in \lambda : x < \alpha\}$ $(p, \omega]$ $(p \in \omega + 1)$ and unions of these i.e. there sets form a basis.	
· · · · · · · · · · · · · · · · · · ·	and unions of these i.e. these sets form a basis.	
Eq. $\chi = \omega_{i+1} = [\sigma, \omega_i]$	In X, w, does not have a comptable local basis	

$w = \{0, 1, 2, \dots\}$
$\omega + i = [0, \omega] = \{0, 1, 2, 3, \dots, \frac{3}{2} \cup \frac$
$= \omega + 1 \simeq \{0, \frac{1}{2}, \frac{3}{4}, \frac{4}{5}, \dots, \{V\}\} \subset \mathbb{R} $ (subspace topology)
X is the "one-point compactification" of w .
S' is the one-point compactification of R~ (0,1)
$S^2 R^2 \qquad \qquad$
$S^{n} = R^{n} (n \ge 1)$
A topological space X is compact if every open cover of X has a
A topological space X is compact if every open cover of X has a finite subcover, i.e. if $X = U U_{x}$, $U_{x} \leq X$ open, there exist
$k \neq i; \alpha_1, \dots, \alpha_k \in A$ such that $X = U_{\alpha_1} \vee U_{\alpha_2} \vee \cdots \vee U_{\alpha_k}$. (See my
video on compactness for review). **Remark: The compact subspaces of R° are the closed bounded subsets. But this statement depends on the closice of metric.
But this statement depends on the closice of metric.

The new metric $\widetilde{d}(x,y) = \min \{ d(x,y), 1 \}$ on \mathbb{R}^n defines the same topology on \mathbb{R}^n at lad metric (the standard topology) [0,00) is a closed bounded subset of R" with respect to i but it is not compact. w (with the order to pology) is a discrete topological space. You can also see this by thinking of $\omega \simeq \{0, \pm, \mp, \mp, \mp, \cdots\} \subset \mathbb{R}$. Every point is isolated. $\chi = [0, \omega] = \omega \cup \{\omega\} \simeq -$ is compact. This can be seen from (it) above or from the definition of compactness. If $\{U_{\alpha}\}_{\alpha\in A}$ is an open cover of $X = [0, \omega]$ then there exists $w \in A$ such that $\omega \in U_{\alpha}$ which doe covers $(\beta, \omega]$ for some $\beta < \omega$ $(\beta \text{ is finite})$. There are only finitely many elements $\alpha \leq \omega$ and these points are covered by finitely many U_{α} 's. Together with U_{α} we have a finite subcover of X. Every ordinal is either a "successor ordinal at 1 = a U { k } "(init ordinal" eg. w, w², ..., w³, w³, w₁, ... O is also a limit ordinal 1, 2, 3 ..., co+1, w+2,... If I is a limit ordinal, then I is compact If it is any ordinal, [0, 2] is compact.

Let X be a top. Space and let $A \subseteq X$. A limit point or accumulated of A is a point $x \in X$ such that every open nobid of x has a point of A than x itself i.e. every "deleted" nobid $U - \tilde{x} \tilde{x}$ has a point of A. For the limit points of $(O, 1) \subset \mathbb{R}$ in \mathbb{R} are $[O, 1]$	oint on point
Eg. the limit points of $(0,1) \subset \mathbb{R}$ in \mathbb{R} are $[0,1]$. The limit $\dots [0,1]$ $\dots [0,1]$.	
In $X = [o, w] = w \vee \{w\}$, w is a limit point of w.	· · · · · ·
$ \begin{array}{c} \bullet $	
In $X = [0, w_i]$, w_i is a limit point of w_i but there is no sequence in w_i Converging to w_i .	
W_1 W_2 $X = W, V \\ \\ W_1$ $X = W, V \\ \\ \\ W_1$ $X = W, V \\ \\ \\ \\ W_1$ $X = W, V \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	convergait

The Axion of Choice (AC) says that if & Aa Jaci is a collection of sets? then
there exists a set $S = \{a_{\alpha} : \alpha \in I\}$ where $a_{\alpha} \in A_{\alpha}$.
TEC - IF + AC
Zorn's lemma let (S, \leq) be a partially ordered set. So ' \leq ' is a binary relation on the elements of S such that for all $a, b, c \in S$,
relation on the elements of S such that for all a, b, c E),
• a < a (reflexive)
• If as 6 and bsc then asc.
. If as 6 and 6 sa then a=6.
'Eartial' (as distinct from 'total') order means we may have incomparable dements
AL JUDE ARIVER Q SO NOV 654.
Eg. Subsets at a given set under inclusion form a partial order.
Linear Algebra V is a vector space over a field F. This is not a normal
space. Given a set SCV, Span S = { linear combinations of vectors in S} = { q, v, + + q, vk : q, eF, v, eS, k > 1 }. S is linearly independent if
$= \{q, v_1 + \dots + q, v_k: q, et, v, e\}, k \neq 1\}.$
The only solution of a, V, + + 4, V = C (1, V)
Theorem Every vector space has a basis BCV, i.e. Bis linearly independent
and Span B= V.

Proof Let S be the collection of all linearly independent subsets of V. Let C < S be a chain. Then M = UE is linearly independent. (If VI,..., Vie M then ViE A; EC, A, U... VAK EC; infact WLOG A, EA, E. EA, and A, U. ... VAK = AKEC.) By Zorn's Comma, S has a maximal element B. This is a bassis. (Since $B \in S$, B is line. indep. To show Span B = S, suppose $v \in V$, $v \notin Span B$; then $B \cup 9 \vee 3$ is line. indep., a contradiction.) Eq. R is a vector space over Q. So it has a bassis. But this cannot be written down explicitly. B is ancountable. (Use: If A: A. A. ... are countable sets then UAk is countable.) Zorn's lemma If (S, <) is a partially ordered set in which every chain is bounded above, then S has a maximal dement. A chain is a totally ordered subset. If C is a chain them an upper bound for C is a element me S such that x = m for all x e C. (Note: We le not require m to be in C.)

A countable minor of compelle sets contable. A A= . 8 A 6 = 20 Theorem X = R³ 203 can be partitioned into lines. Use transfinite induction. |X| = 3And how many lines do we need to cover X?

 $f: [o, \omega_1] \longrightarrow [o, \omega_1]$ $f(\alpha) = \begin{cases} \alpha, & \text{if } \alpha < \omega, \\ 0, & \text{if } \alpha = \omega_i \end{cases}$ Whenever $(\chi_{\alpha})_{n=0,1,2,3,...} = (\chi_{0},\chi_{1},\chi_{2},\chi_{3},...) \longrightarrow \chi$ in $[0,\omega_{1}]$, f(xa) -> f(x) (f maps every convergent sequence to a convergent sequence). Yet f is not continuous. Eo3 is open in $X = [0, \infty]$ since $303 = 3x \in X$: x < 13. f(303) = 30, w, 3 is not open in X. Any basic open ubbd of X is $(\alpha, \omega) = \{x \in X : x > \alpha\}$.

In general $A^B = \xi$ functions $B \rightarrow A \xi$. eg. $A^2 = A \times A$	$2 = \{0, 1\}$ $A^{2} = A^{\{0, 1\}} = \{ \text{functions } \{0, 1\} \rightarrow A \}$
$A^{\omega} = \{ \{q_0, q_1, q_2, q_3, \dots \} \in \{q_i \in A\} \}$ $= \{ \{q_0, q_1, q_2, q_3, \dots \} \in \{q_i \in A\} \}$	$= \{(a_0, a_1) : a_0, a_1 \in A\}$
But for ordinals $w = \{(a_0, q_1, q_2, \cdots): q: \in w\}$ but $q:=0$ for its	$A^{k} = A \times A \times \cdots \times A$ k
$\omega = ((a_0, \alpha_1, \alpha_2, \dots), \alpha_n \in \omega)$ = $\bigcup \omega^k$ kew	$= \{a_0, q_1, \dots, q_{k-1}\} : q_i \in A\}$ $= \{f_{inctions}, \{o_1, \dots, k-i\} \to A\}$
$ \mathbb{R} = \omega ^{ \omega } = 2^{\omega} = 2^{4} = \xi $ functions $\omega \rightarrow 2$	
$= \left \begin{cases} (q_0, q_1, q_2, q_3, \cdots \\ q_0, q_1, q_2, q_3, \cdots \\ \end{cases} \right _{I'} \qquad \qquad$	
$ \mathbb{Z} \mathbb{R} \mathcal{H}_{r} = \omega \mathcal{H}_{o} <$	S. < 2% Question of equality is independent of ZFC
· · · · · · · · · · · · · · · · · · ·	