

Fg. (More generally) Let ✗ be any set and lets be ^a collection of subsets of ✗ which cover ✗ , i.e. Us ⁼ ✗ . Then the collection of all unions of finite intersections $s_i \cap S_2 \cap \cdots \cap S_k$, $S_i \cap S_k \in S$ is a topology on ✗ . The members of S are called ^a sub . basis for this topology and the topology is said to be generated by S. S is called a <u>base</u> (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds if for all S_{1} , S_{2} \in S_{1} S_{s} S_{t} and all $u \in S_{t} \cap S_{z}$ there exists $S_{3} \in S_{3}$ such that Eg. Let ✗ be any set . $u \in S_3 \subseteq S_1 \cap S_2$. on X is the collection of all subsets of X . (2^x) The indiscrete topology on X is { Ø, x }. If $X = \{0, 1\}$ then there are four possible topologies on $X := \{0, X\}$, $\{0, 80\}$, $\{1\}$, $X\}$, $\{ \phi, \{\circ\}, \chi \}$, $\{ \phi, \{\circ\}, \chi \}$.

In R², open halls with aspect to dr., dr, do look like These three metrics define the same topology. $\frac{d}{dx}$ $\frac{d}{dx}$ $\frac{d}{dx}$ respectively. I. Fill The metric d(xg)= $\begin{cases} 0, & \text{if } n \geq 0, \text{if } n = 1, & \text{if } n$ if ✗ =T defines the discrete topology . $\int f \cdot x + y$ ^A topological space is metrizable if its topology can be given by some metric . (not uniquely however) If ✗ is an infinite set, then its finite complement topology is not metrizable. ^A topology is Hausdorff if for any t wo points $x + y$, there exist open sets U, V' such that $x \in U, y \in V,$ C y open sets u_i Every metric space is Hausdorff since if $x \neq y$, $d = d(x, y) > 0$. Take $U = B_{S_A}(x)$ $V = B_{s/3}$ (y)

 $|1+2+4+8+16+32+64+... = -1$ The partial sums 1, 3, 7, 15, 31, 63, ... converge to -1 in the 2-adic norm. Note: If (x_n) is a sequence of points in a top. space X, we say $(x_n)_n$ converges to $x \in X$ if for every open nbhd U of x , $x_u \in U$ for all a sufficient U large . (This means : for all ^U open nbhd (x^2-x^2) , x^2 \cdot x, of x, the exists N such that $x_n \in U$ x_5 x_2 x_3 x_2 x_4 x_5 x_6 x_7 x_8 x_9 \mathcal{H}_q In place of arbitrary open nbhds of x, it suffices to check basic open nbhds. For metric topology, it suffices to check open balls. In this case, $\pi_a \rightarrow x$ provided that for all $\varepsilon > 0$, there exists N such that $x_n \in B_{\epsilon}(x)$ whenever $n > N$. In our example above. $d(x_{n+1}x) = 2 \rightarrow \infty$ as $n \rightarrow \infty$. In place of arbitric tops
 π_n -> π provid
 π_n -> π provid
 $\pi_n \in B_{\epsilon}$ for
 i.e. $d(\pi_n, \pi) <$

in our example $||2^n|| = \frac{1}{2} \rightarrow 0$ as $n \rightarrow \infty$. Find the inverse of 5 mod b9.

 I_n Z_{1672} $= 1 - 4 + 16 - 64 + 256 -1024 + \cdots$ In $\frac{2}{65}$: $\frac{1}{5}$ =
Eg. in Z with the
converges. It converges $= 1 - 4 + 16$ $= 15.$ E_g . in Z with the finite complement topology, the sequence $(n)_n = (1,2,3)$..) converges . It converges to 22. (n) \rightarrow 22. In fact for every $a \in \mathbb{Z}$,
 $(a)_n \rightarrow a$. 。
● 1 Theorem If X is Hausdorff, then every sequence in ✗ has at most one limit. (it converges $\frac{1}{25}$. Proof Suppose a≠b in a Hausdorff space X where a sequence Gr. In + a $1, 13, 25, 84$ ord and $(x_n)_n \rightarrow b$. Choose disjoint open 1^{13} , 25, 84 84 and \bigcirc \bigcirc \bigcirc \bigcirc which \bigcirc y Then pick $n > max \{N_1, N_2\}$ to There exists N_i such that respectively. obtain ^a contradiction . $x_n \in U$ for all $n > N_i$; also N_2 such that $x_n \in V$ for all $n > N_2$.

Theorem If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are continuous, so is gof: $X \rightarrow Z$. Proof If $U \subseteq Z$ is open then $g'(U) \subseteq Y$ is open so $f(g'(u)) \subseteq X$ is open. $(s \cdot f)(u)$ \Box when are two topological spaces X, ^Y " the same " ? (✗ ≈Y : ✗ . Yare homeomorphic This means there is a bijection $X \rightarrow Y$ taking one topology to the other. I.e. there is a bijection f: X→ Y such that f, f are continuous. f " Eg . X is R with the standard topology; ^Y is IR with the finite complement topology ; 2- is IR with the discrete topology ; v4 is IR with the indiscrete topology { [∅], ^R} . $\begin{array}{ccc} W & \text{is} & \mathbb{R} & \text{with} & \mathcal{H}_{\ell} & \text{indiscrete} & \text{to} \ \mathcal{I} & \xrightarrow{\iota} \mathcal{X} & \xrightarrow{\iota} Y & \xrightarrow{\iota} W & \text{where} & \iota(x) = x. \end{array}$ $\begin{array}{ccc} & \xrightarrow{\iota} & \xrightarrow{\$ $Z \rightarrow X \rightarrow Y \rightarrow W$ where $L(x) = x$.
 $\rightarrow X \rightarrow Y \rightarrow W$ where $L(x) = x$.
 \downarrow are two topologies on X , we say intot
topology topology I's fines than J if J'2J
on R on R ' is finer than I if I ' (J' is a refinement of J) E_g . The finite complement topology d' is coarser than J if J' if J' on ✗ is the coarsest topology for which points are closed.

 $Eq.$ I° $Eq.$ continuous $\frac{1}{\sqrt{2}}$ not continuous $f: (-\infty, \infty) \cup (0, \infty) \rightarrow \mathbb{R}$ If $f: A \rightarrow \mathbb{R}^m$ has $f(A) \subseteq B$ we might as well think of $f: A \rightarrow \mathbb{R}$ has $f(A) \subseteq B$ be magneted well function to saying f: ^A→ ^B is continuous . to saying $f: A \rightarrow B$ is continuous.
Suppose $f: A \rightarrow B$ is continuous and let $U \subseteq R^m$. Then $f(x) = f'(U \cap B)$ is open in A. Similarly one proves the converse. Given ^A [≤] ✗ where ✗ is a top . space , there is an inclusion map $i : A \rightarrow X$ $i(a) = a$. Cone to one; not onto in general). The subspace topology on A is the coarsest topology for which the inclusion map 1 is continuous.

Given UEX open , i $\mathcal{U}(u) = U \cap A$. $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A U (B \cap C) = (A \cup B) \cap (A \cup C)$ Quotient Topology Suppose f: X→Y is onto. Given a topology on $X = (X, T)$ the most natural way this gives a topology on X - (1, 0)
on Y is by taking the finest topology on Y for which m Y is by taking the finish A Möbien strip Willet's \rightarrow The quotient There are three ways to think of this situation. We quotient topology on ^Y lere are three ways to think of this situation. is the finest ii, we have an equivalence relation on ^X . topology on Y for which the $\zeta(\mathfrak{m})$ A partition of X . map f: $\lambda \rightarrow \gamma$ is

The Espology on Y= X/f $\dot{\gamma}$ $\begin{cases} V \subseteq Y : \quad \mathcal{F}(V) \text{ is open in } X \end{cases}$ $K X/\sim$ $\frac{x}{\sqrt{2}}$ \rightarrow \approx \rightarrow \approx To show this is a topology, use $\bigcup_{\alpha} f(A_{\alpha}) = f(\bigcup_{\alpha} A_{\alpha})$ $\bigcap_{\alpha} f(A_{\alpha}) \supseteq f(\bigcap_{\alpha} A_{\alpha})$ $\begin{picture}(120,15) \put(0,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}} \put(15,0){\line(1,0){155}}$ $U \tilde{f}(A_{\alpha}) = f'(U_{A_{\alpha}})$ $Q f(A_{\alpha}) = f(Q_{\alpha})$ $sin ((-\infty,0) \cap (0,\infty)) = sin \emptyset = \emptyset$ $\lim_{n \to \infty} ((-\infty, 0)) = (-1, 1)$ $Sin.$ $(C-\infty, 0)$ $U(0, \infty)) = [-(1, 1)]$ $sin((0,0)) = [f,1]$

(closed) $\sqrt{111}$. ≈ , annulus $N/(c_a)$ $\sqrt{4}$ = ($\sqrt{2}$) closed disk Film " l Mobius strip $\frac{1}{\sqrt{2}}$ \approx $\frac{1}{\sqrt{2}}$ torus $\frac{1}{\sqrt{2}}$ the examples listed here $\frac{1}{\sqrt{1-\epsilon}}$ \approx Klein bottle not embeddable in . F-y [≈] PTR ⁼ real projective plane identify F [→]^② ⁵ (2- sphere) all boundary points

boundary $\alpha q l$ boundary " S' In R3 consider the Sollowing two subspaces I_S $X \cong Y$? Yes. S^{\sim} = n-sphere \approx unit sphere in $\mathbb{R}^{n+1} = \{(x_{0}, \cdots, x_{n}) \in \mathbb{R}^{n+1} : \mathcal{Z}x_{i} = 1\}$ $S^2 = \cdots S^2 = (1, 1) S^2 = \cdots S^2 = R_v \{ \infty \}$

[0,1] is connected. This is a theorem in analysis. Octline of avgument: Suppose [0,1] = ULIV votere U, Vare nonempty
open. DEU without boss of generality. So [0,2) \leq U for some
2>0. How large can 2 ba? $\{ \epsilon : [o, \epsilon) \subseteq U \}$ is a nonempty set with upper bound 1 So there is a least upper lound. (supremin)
Is this supremin in U or in V? Either way leads to a contradiction. If we remove any point from $(0,1)$ ² RUR
which is disconnected. This is not true for [0,1) Q is disconnected (in the standard topology in R) $\mathbb{Q} = U \sqcup V$ where $U = \begin{cases} xe & Q : ... & x < E \end{cases} = \mathbb{Q} \cap (-\infty, E)$ $V = \{ x \in \mathbb{Q} : x > \sqrt{2} \} = Q \cap (\sqrt{2}, \infty)$ Q: s totally discounded:

An interval in R is the same thing as a connected subset of R. Theorem R is connected. We'll talk about the foundations of R a little lates, including completeness. theorem ^A continuous image of ^a connected space is connected. I_n other words if $f: X \rightarrow Y$ is { surjective and Y is connected, then and continuous Y is connected. ' Aoof Suppose $Y = U_N V$ where $U, V \subseteq Y$ are open. Then $X = \overline{f}(u) \cup \overline{f}(v)$ where $f'(u)$, $f'(v)$ are open in X. So one of these, say $f'(u)$, is empty. ' So $U=Ø.$ This means Y is connected. In ^a video I sent you , we showed R is connected. Corollary 10,1] is connected. Define $g : \mathbb{R} \to [0,1]$ which is ^a continuous surjection . ☐ Definition ^A pdh from ✗ toy f function Υ : [0, 1] \longrightarrow X such that in ✗ γ_{f} is)= a $\frac{x}{2}$ continuous $\gamma_{(i)}$ = y. ✗ ✗ is ptah-connected if for any $x, y \in X$, there is a path from x to y ink.

Theorem If X is path-connected then X is connected. Proof Suppose nonempty open Λ . $=$ U \sqcup V Let ✗ c- U where $, y \in V$ U.VE . ✗ If are ✗ is pathected .
connected , Leg V
 $S = 4$. Then
a since $[0,1]$ is there is a path $\gamma: [0,1] \rightarrow \chi$ with $\gamma(0) = \gamma'$ $\gamma(1) = \gamma'$. Then $[0,1] = \gamma'(u) \sqcup \gamma'(v) = \gamma'(x)$, a contradiction since $[0,1]$ is connected and $\tilde{T}(u)$, $\tilde{\gamma}'(v)$ are disjoint nonempty open. $\bm{\Pi}$. The converse of the theorem is false. An example of a space that is connected but not path-connected : connected but not path-connected :

X C R²

X C R²

X C R² $X = \{ (x, \sin \frac{1}{2}) : x \neq 0 \}$ U $\frac{1016544}{6}$ Let γ, γ' be two paths in X from interval on y-arris Details : See Mimbres . $X \longrightarrow K$ to y ie. $\eta, \gamma' : [0,1] \longrightarrow X$ $\gamma(0) = \gamma'(0) = \gamma,$
 $\gamma'(0) = \gamma'(0) = 9.$ Then γ , γ' are homolopic if $\gamma(0) = \gamma'(0) = y$.

Here is a disciple $[0,1] \times [0,1] \longrightarrow X$ $\frac{\gamma_{(t)} = \gamma_{0}(t)}{\gamma_{s}(t)}$ y $(s,t) \rightarrow \gamma(t)$ $\gamma'(f) = \gamma(f)$ such that $\gamma_s(\sigma) = \pi$, $\gamma_s(\tau) = y$ for all $s \in [0,1]$ $\gamma_{e}(t) = \gamma'(t)$ for all te [0,1].
 $\gamma_{e}(t) = \gamma'(t)$ ale think of $\gamma'(t)$ as a "continuous detormation" from $\gamma'(t)$ to $\gamma'(t)$.
(homotopy)
(x) A closed curve based at $x \in \gamma$ is a carve from $x + bx$. $[0,1] \rightarrow \{x\}$. If every closed curve in γ is homotopic to a null curve, then So this is not homeonoghi Eg. 19 is connected but not simply connected.

Let $(x_n)_n$ be a sequence in X. We say Xu [→] ✗ [≤] ✗ if for every open nbhd U of π in X , beyond some point in the $(x_{1}, x_{2}, x_{3},...)$ sequence all remaining terms are in ^U i.e. there exists N such that $x_n \in U$ whenever $a > N$. (We say $x_n \in U$ for all sufficiently large n, i.e. $X_n \in U$ slewer $n \gg 1$.) The full definition of $x_n \to \infty$ is: For every open nbhd U of x in X, there exists N such that $x_{i} \in U$ wherever $n > N$. $x_i = \frac{x_i}{x_i}$ per noted u. Theorem let $f: X \rightarrow Y$ be continuous where X, Y are top. spaces. If $x \rightarrow x$ in X then $f(x_n) \rightarrow f(x)$ in Y. $\frac{f(x,y)}{f(x,y)} = \frac{f(x,y)}{f(x,y)}$ Prook Let V be an open mbhd of f(x) in Y. Let U= f'(V) which is open in ✗ since f- is continuous . Note that $x \in U$. There exists N such that $x_n \in U$ for all $n > N$. S_{0} f(xn) $\in V$ for all $n > N$. \Box

Is the converse true ? Namely if ^F: ✗[→] ^Y maps convergent sequences to convergent sequences, does this mean f is continuous? In other words, suppose f : ✗[→] ^Y such that whenever ✗→✗ in ✗, we have $f(x_n) \rightarrow f(x)$ in γ . Must f be continuous? Yes for metrizable spaces ; no in general . Metrizable spaces are first countable : there is ^a countable basis of open nbhds at very point. Given $a \in X$ where X is a metric space, $B_{\varepsilon}(a) = \begin{cases} x \in X : d(x, a) < \varepsilon \end{cases}$ is a collection of basic open abhds at a . There are uncountably many of these. The open nichds $B_{\frac{1}{n}}(a)$ $(n=1,2,3,...)$ suffice for doing topology. $x_n \to x$ iff for all $m \ge 1$ there exists N such that $x_n \in B_+(x)$ for all h> N. The balls $B_i(a)$, $a \in X$ generate all the open sets as a basis. $m \gtrsim 1$ First countability of ^a top. space says that we have a countable collection inst commander that a top space the condition). Metric spaces are first countable . R^{on} has a stronger property: it is second contable meaning it has a countable basis for the entire topology $\{B_1$ (a): $a \in \mathbb{Q}^n$

Theorem For first countable spaces, a function is continuous iff it maps convergent sequences to convergent sequences. This is an inevitable result of the fact that sequences are inherently countable . Remark : Second countability is Beyond countable : strictly stronger than first countability . Ordinals $\{0, \{0\}\}=2$ $\begin{matrix} 56 & 563 & = 2 \\ -56 & 5 & 2013 & = 2 \end{matrix}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{2}$ $\frac{1}{2}$ w $\frac{1}{2}$ w, w+i} = { } {☒} :{{ }} "{" "2} ⁼ {91,33, ... } ✓ {w} $=$ $\begin{bmatrix} 2 & 3 & 70 \end{bmatrix} = \begin{bmatrix} 2 & 5 \end{bmatrix} = \begin{bmatrix} 2 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 1/2, 3, \cdots \end{bmatrix}$ Recursive construction. Each ordinal is the set of all the smaller ordinals. totally Pecapsive
A totalized
A cital set set (S, <) is a set S with a binary relation 's' on S sotisfying \circ Given $x,y \in S$, exactly one of the statements $x < y$, $x = y$, $y \in x$ is true (" trichotomy property ") ; $\sum_{k=1}^{n} x_k > y$ • If $x < y < z$ then $x < z$ ("transitivity"). $f^* +$ icketon
If $x < y < z$
All-ondered set
a least deep A well-ordered set is a totally ordered set in ohich every nonempty subset has a least element. Eg for the usual order, $(N, <)$ is well-ordered; $(Z, <)$ is not [0,0) is not well-ordered. د,
م*ا* ج

Every well-ordered set is order-isonoralic to a unique ordinal. So the ordinals are the camonical representatives of the well-ordered sets. Well-ordered sets are exactly the sets on which we can do induction. rour oncertain sous le space de meur suis en main In ZFC : Zermelo - Fraenhle + Axiom of Choice, the Well-Ondering Principle is a theorem . So is Zorn's Lemma . In ZF , the following are equivalent : • Axiom Choice • Well. Ordering Principle • Zorn's Lerma • Transfinite Induction If a and β are ordinals, then $\alpha +$ $\beta = \frac{\sqrt{3}}{2004}$ ¥" U
copy of C copy of copy of w_{t} : veu craening tracque $\langle \xi \rangle$ (β , $\langle \xi \rangle$) $0 + 23$ u and β are ordinals, then $u + \beta$.
 $u + 1 = \frac{1}{u + 23}$ $u = w$

The new metric $\tilde{d}(x,y) = min \{d(x,y), 1\}$ on \mathbb{R}^n defines the same topology on \mathbb{R}^n
standard metric (the standard topology) $\lbrack 0, \infty\rangle$ is a closed bounded subset of \mathbb{R}^4 undric $\tilde{d}(x,y) = min \{d(x,y), 1\}$ on \mathbb{R}^n defines the same topology or (the standard topology)
is a desert bounded subset of \mathbb{R}^n with respect to \tilde{d} but it is not compact
ith the order topology) is a discre respect to if but it is not compact. ^w (with the order topology) is ^a discrete topological space . You can also see this by thinking of $\omega \simeq \begin{cases} 0 & \text{if } 1 & \text{if } 2 & \text{if } 3 & \text{if } 4 & \text{if } 5 \end{cases}$ 3 CIR . Every point is isolated. $\chi = [0, \omega] = \omega \cup \omega$ } ≈ $\frac{1}{2}$, $\frac{2}{3}$, $\frac{3}{4}$, $\frac{4}{5}$, $\frac{3}{3}$
 $\frac{1}{2}$
 $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{3}$ is compact. This can be seen from (+) above or from the definition of compactness. If $\{U_{a}\}_{a \in A}$ is an open corer of χ = $[0, \omega]$ then there exists $v_0 \in A$ such that $\omega \in U_{\alpha_0}$ which also covers (β, ω) for some $\beta < \omega$ (p is finite). There are only finitely many elements ✗ ≤ ^w and these points are covered by finitely many ⁴, 's . (with the order topology) is a discrete topology
(with the order topology) is a discrete topol
thinking of $\omega \approx \{0, \frac{1}{2}, \frac{2}{3}, \frac{2}{4}, \frac{4}{5}, \frac{3}{5}\}\subset \mathbb{R}$.
 $[0, \omega] = \omega \cup \{0\} \simeq \frac{1}{2}$
 $\frac{1}{3}$ $\frac{2}{11}$ is $\frac{1$ we have a finite subcores of ✗ . Every ordinal is either a successor ordinal " or a " limit ordinal " $x + i = x \cup \{x\}$. The set of eg . $\omega, \,\, \omega^2, \, \cdot \cdot \, , \,\, \omega^3, \,\, \omega^{\ast}, \,\, \omega_{\cdot}, \, \cdot \cdot$ $1, 2, 3, ...$ co+1, w+2, ... 0 is also a limit ordinal. If λ is a limit ordinal, then λ is compact. If λ is any ordinal, $[0,\lambda]$ is compact.

Let X be a top. Space and let $A \subseteq X$. A limit point or • accumulation point $x \in A$ is a point $x \in X$ such that every open nbhd of x has a point of A other than x itself i.e. every "deleted" nbhd u - ϵ x3 las a point ϵ A. Eg. the limit points of $(0,1)$ C R in R are $[0,1]$. The Limit $\begin{bmatrix} 0,1 \end{bmatrix}$. $\begin{bmatrix} 0,1 \end{bmatrix}$. $Ia \quad X = [0, \omega] = \omega \vee \frac{\omega}{\omega}, \qquad \omega \quad \text{is} \quad a \text{ limit point of } \omega.$ ^① @ @ & a... .Be \sim w I_n $X = [o, \omega,]$, ω_i is a limit point of ω_i but there is no sequence in ω_j converging to ω_i . $\begin{picture}(120,10) \put(0,0){\line(1,0){10}} \put(15,0){\line(1,0){10}} \put(15,0){\line($ $\frac{w_i}{x}$ = w. v fw. } X = W, V & W, Y & Win}
An example of a discontinuous map f: X→ Y which maps convergent sequences to convergant sequences ?

Proof Let ^S be the collection of all linearly independent subsets of V. Let $C \subseteq S$ be a chain. Then $M = UC$ is linearly independent. $(TF, v_1, ..., v_k \in M \text{ then } v_i \in A_i \in C$, $A_i \cup ...$ $v A_k \in C$ $intact$ WLOG $A_1 \subseteq A_2 \subseteq \cdots \subseteq A_k$ and $A_1U...UA_k = A_k \in C.$) B_{ij} Zorn's Lenuna, S has a maximal element B. This is a basis. (Since BES, B is lin. indep. To show Span B= S, B. This is a besis. (Since $B \in S$, 6 is lin. may. 10 show spin $v = 7$.) Eg. R is a vector space over Q. So it has a basis. But this cannot be written down explicitly . B is ancountable. (Use: If A_1A_2, A_3, \dots are countable sets then VA_k is countable. nonempty p 1 dec 1 c R= Zorn's Lemma If (^S , <) is an partially ordered set in which every chain is bounded be
Zorn's ritten
<u>emma</u>
then above, then S has a maximal element. ^A chain is a totally ordered subset . If ^C is ^a chair then an upper resper bound for C is an element $m \in S$ such that $x \le m$ for all $x \in C$. (Note: We do not require ^m to be in C.)

A countable min of countable sets countable. α $X = \mathbb{R}^3$. $\{0\}$ can be partitioned into lines. Theorem