How do we judge ^a set as large or small ? lis cardinality cii) measure iii.) dimension Civ) Baire category : first category or second category (small or (large ⁱ ^w) ultrafilter sense meagre) not meagre) (later) Warm up Lot A ≤ Y, X top. space. We say A is dence if every nonempty USX satisfies $A\cap U\neq\varnothing$ (A meets U). A set $A\subseteq X$ is somewhere dense if \overline{A} contains some nonempty open set $U \subseteq X$. Eg. Q is some where dense since $\overline{\mathbb{R}} = \mathbb{R}$. $\mathbb{R} \cap [0,1]$ is somewhere dense since its closure is $[0,1]$. Note: $A \subseteq X$ is somewhere dense $\tilde{x} = \tilde{A}^{\circ} \neq \emptyset$. A= $\{0, \frac{1}{2}, \frac{2}{3}, \frac{2}{4}, \frac{4}{5}, \cdots\}$ is nowhere dense. $\overline{A} = \{0, \frac{1}{2}, \frac{2}{3}, \frac{3}{4}, \frac{4}{5}, \cdots\}$...} \cup {1} has empty interior. **i b** \bullet **d** \bullet \bullet O a & I soarch a bro-se a br

A sequence (x_n) in a metric space $(X,1)$ is Cancley $x \in \mathcal{X}$ for all $z > 0$ there exist N such that for all $m,n > N$, $d(x_m, x_n) < \epsilon$. Every convergent separce in a metric space is Cauchy. X is complete (or d is complete) if every Cauchy sequence in X converges. If $A \subseteq X$ where X is a metric space, then $diam(A)$ = $sup \{ d(a,b) : a, b \in A \}$. $\in [0,\infty]$. $(A \in \emptyset)$ If diam(A) < 0 then A is bounded. If A is embounded then diamA= ∞ . Lemma 1.1 Consider a chain $K_1 \supseteq K_2 \supseteq K_3 \supseteq K_4$?... of nonempty closed sets in a complete such that
Cauchy.
If AS
Ilemma 1.
Metric Sp metric space X with diam $K_n \rightarrow 0$. Then $\bigcap K_n \neq \emptyset$. $2K_42...$ of none
Then $\bigcap K_n \neq \emptyset$. Lennie 1.2 Every closed subspace of a complete metric space is complete. Proof: Exercise. In a metric space (X, d) , if $S \lt \epsilon$ then $B_{s}(a) \subseteq \overline{B_{s}(a)} \subseteq B_{\epsilon}(a)$. Let X be a top space. A subset $A \subseteq X$ is of first category if it's a countable union of nowhere dense sets i.e. $A = A_1 \cup A_2 \cup A_3 \cup \cdots, A_n$ nowhere dense. Eg. Q is of first category . However R is not of first category . This follows from category. However R:
Baire Category Theorem complete metric space then X is of second category i.e. not of first category. t of Sirst category.
Corollary CA.K.A Baire Category Theorem Part II) let X be a complete metric space and suppose $D_1, D_2, D_3, \dots \leq X$ are dense open sets. Then $D_1 \cap D_2 \cap D_3 \cap D_3 \cap \dots \neq \varnothing$.

Eg. let l_1 , l_2 , l_3 , \cdots be lines in \mathbb{R}^3 . Then $\bigcup l_n \neq \mathbb{R}^3$. Proof Take $D_n = \mathbb{R}^3 - \ell_n$. (dense open set in \mathbb{R}^3). \mathbb{R}^3 is a complete metric space. Eg. Color the points of R° using a countable set of colors. Then at least one of the color sots is somewhere dense. Application There exist functions $R\rightarrow R$ which are continuous but nowhere differentiable. Proof uses Baire Category Theory . Continuous $V = C([0,1]) = \frac{1}{2}$ functions $[0,1] \rightarrow R$ 3. This vector space is a metric space $using \|f\| = \sup \{f(x) | : x \in [0, 1]\} < \infty$ for all $f \in V$. $d(f,g) = Vf-g1$. Define subsets $A_{m,n}$ CV where m_in are pos. integers by $A_{m,n} = \{ f \in V : \int \frac{f(q) - f(s)}{y - x} \} < m$ whenever $0 < |x - y| < \frac{1}{n} \}$. Closed, noahere dense. (see Lemma 4.1) Also if $f \in V$ is differentiable then $f \in A_{m,n}$ for some $m,n \geq 1$.

Finite Permutation Groups S^r = $symmetry of groups$ of degree $n = \{ \omega\}$ permitations of x^3 , $X = \{1, 2, \cdots, n\}$. $|S_n| = n!$; norabelian of $n \ge 3$. A permutation group of degree n is a subgroup HSSn. For $ie X$, the stabilizer of i in H is $H_i = 8$ heff: hci)=i3 < H. The orbit of i is $i^{H} = \{h(i) : h \in H\} \subseteq X$. Theorem (Orbit Stabilizer Formula) $|i^H| = [H : Hi] = \text{mm}$ left (or right) usets Le orbit of i is $i^H = \{h(i) : h \in H\} \subseteq X$.

Leorem (Orbit Stabilizer Formula) $|i^H| = [H : Hi]$: $[H : H_i] = \frac{[H]}{[H - 1]}$ subgroup $H_i \leq H$ $[H:H_{i}] = \frac{H_{i}}{H_{i}}$ $|H| = |H_i|$ [H: K:] In the infinite case, $|A|[B]| = |A \times B| = max |[A|, |B|]$ whenever at least one of A, B is infinite. If $A \subseteq X$ then $H_A = 5$ tabilizer of $A = \{h \in H : h(A) = A\}$ where $h(A) = \{h(a) : a \in A\}$. The orbit of $A = A^H = \{h(A) : h \in A\}$. $|A^H| = |H : H_A|$; $|H| = |A^H| |H_A|$.

CH (Continuum Hypothesis): There do not exist sets A with S_o <1A1 < 2 "° . CH is independent of ZFC, But most everyday mathematics uses ZFC only. and does not depend on whether or not CH is true. theorem If ^H [≤] G==Sym IN is ^a closed subgroup , then IG : ^H] is either countable or 2^{n} . This is proved using the Baire Category Theorem . ^G is ^a top. space (top. group) and its topology comes from a metric forwhich G is complete. To define $d(f,g)$ for $f,g \in G$ $d_0(f,g) = \begin{cases} 0 & \text{if } f = g \\ 0 & \text{if } f = g \end{cases}$ $\frac{1}{z^n}$ if $f(n) \neq g(n)$ for some n, with n minimal This is a melic . Replace it with ^a nicer metric $d(f,g) = \max \{d_o(f,g), d_o(f,g')\}.$ This is a metric. d , do define the same topology in ^G but (G, d) is complete; (G. do) is not complete .

e.g. $(1,2,3,4,5,6,...)$ $(2, 1, 3, 4, 5, 6, ...)$ $(2, 3, 1, 4, 5, 6, \cdots)$.
) $(2,3,4,1,5,6,-)$ convenges in (G, d_0) to $(2, 3, 4, 5, 6, 7, ...) \in \mathbb{N}^{\omega}$ onlenges in (G, d_0) to $(Z, S, T, S, \theta, r, \cdot) \in \mathbb{N}$
But it does not converge in (G, d) (not Candy). G is a top. group ie. $(f.g) \mapsto fg \in G$ (composition) is continuous $G \in G$ $f \mapsto f' \in G$ (composition) is community and $f \mapsto f$ Sub - Basic open sets in G: These are the stabilizers of finite sets, and their cosets. Basic open sets: Given \therefore ..., $i_k \in N$, $G_{(i_1, i_2, \cdots, i_k)}$: $\{\{\epsilon \in C : \vert \exists i_1, \cdots, f(i_k) = i_k\} \}$ $= G_i \cap G_{i_2} \cap \cdots \cap G_{i_k}$ and $hG_{\tilde{c}i_1\cdots,i_k}$ heg; $i_1\cdots,i_k\in\mathbb{N}$. kz. theorem Let Hik be closed subgroups of G-- sym IN with k≤ It . Then IH:K]≤ % • $[H:K] = 2^{\kappa_0}$. Moreover $[H:K] \leq \frac{\kappa_0}{\kappa_0}$ iff $K \supseteq H_A$ for some $A \subseteq N$, $|A| < \infty$.