

Let X be a set. A topology on X is a collection J of subsets of X
(i) $\emptyset X \in J$
(ii) I is closed under finite intersection and arbitrary union, i.e.
; U,V e J then Unve J;
if $\mathcal{U} \subseteq \mathcal{J}$ then $\mathcal{U} \mathcal{U} \in \mathcal{J}$. (c) Le $\mathcal{U} \vee \mathcal{C} \mathcal{T}$ $\mathcal{U} \vee \mathcal{C} \mathcal{T}$ $\mathcal{T} \in \mathcal{S} \mathcal{U}$: we t? is a sindered collection of
open sets, then $U U_a \in J$.)
Example (standard open set)
The standard topology on IR": X= R". A set U < IR is open it
(i) (l to (i) (i)
$\left(\begin{array}{c} \mathbf{B}_{\mathbf{E}}^{(u)} \end{array} \right)^{v}$ $\left(\begin{array}{c} \mathbf{B}_{\mathbf{E}}^{(u)} \end{array} \right) = \left(\begin{array}{c} \mathbf{B}_{\mathbf{E}}^{(u)} \end{array} \right)^{v} = \left(\begin{array}{c} \mathbf{B}_$
Here Pelus = 2 x = in Euclidean Listance
In other words, a standard (the open E-bell d(x, u) = V(x-u) ² + + (x_n-u_n) ²
of open balls.

Eq. (More gaverally) Let X be any set and let S be a collection of subsets of X which over X, i.e. US = X. Then the allection of all unions of finite intersections SinSzn. NSk , Sun, Sk & is a topology on X. The members of S are called a sub-basis for this topology and the topology is said to be generated by S. S is called a base (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds it? for all $S_{i}, S_{i} \in S_{i}$ S, Sz and all u & S. A.S. there exists SzES such that ue Sz SINSZ. Eq. let X be any set. The discrete topology on X is the collection of all subsets of X. (2*) The indiscrete topology on X is \$0, x3. If $X = \{0, 1\}$ then there are four possible topologies on $X: \{0, X\}, \{0, 10\}, \{13, X\}, \{0, 10\}, X\}, \{0, 10\}, X\}$.

Let X be an infinite set. Let J be the collection	of confloments of finite sets, and Ø
i.e. J = {Ø} U {X-A: A S X, A <00}, X This is a topology on X, called the	<pre>\A = }xeX : x&A}. et difference</pre>
finite complement topology.	X-A, X-A, X\A
A <u>topological space</u> is a pair (X, J) where T is a topological space	Ø, Ø, Ø, O Værnothing
Note: $UJ = X$. By abuse of language, we obtain	n say that X is a topological
Let Y be a set. A distance function (or nettric)	, on X is a function
$d: X \times X \longrightarrow [0, \infty]$ such that for all x, y, e d(x, y) = d(y, x)	ε∈ Χ,
$d(x,y) \ge 0$ and equalify bolds iff $x = y$. $d(x,z) \le d(x,y) + d(y,z)$	
The standard topology on R" is a matric topology.	
The metric $d_2(x, y) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$ (the Euc $d_1(x, y) = x_1 - y_1 + \dots + x_n - y_n $ $d_{\infty}(x, y) = \max \{ \{x_1 - y_1\}, \dots, \ x_n - y_n\} \}$	dlean metric) all give the standard topology on R ⁿ .

In R?, open halls with aspect to dr. A., do look like These three motorics, define the same topology. Mitty Marine Mar The metric $d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$ defines the discrete topology. A topological space is metricable if its topology can be given by some matric. (not uniquely however) If X is an infinite set, then its finite condemnate topology is not watricable. A topology is Hausdorff if for any two points $x \neq y$, there exist open sets U, V such that $x \in U$, $y \in V$, $(\cdot, \cdot) = (\cdot, \cdot)$ $U \cap V = \emptyset$. Every metric space is Hausdorff since if $x \neq y$, d = d(x,y) > 0. Take $U = B_{S_{1}}(x)$, $V = B_{S_{1}}(y)$

An open neighbourhood of a point x ∈ X is an open set containing x.
A basic open mbhd of a point x EX is an open nobed of x which is basic (i.e. it's
in the basis). Even metric spaces can be rather surprising. Consider $X = \mathbb{R}$. A norm on \mathbb{R} is a function $\mathbb{R} \to [0,\infty)$,
$x \mapsto \ x\ \text{satisfy ing}$ (i) $\ x\ \neq 0$; equalify holds iff $x = 0$.
(iii) $ x + y \le x + y $. From any norm on Q, we obtain a metric $d(x,y) = x - y $.
One way to do this is with the weak absolute value $\ x\ = x = x _{\infty} = \begin{cases} x, & if x > 0; \\ -x, & if x < 0 \end{cases}$ This gives the standard to pology on Q.
An atternative is : given $x \in \mathbb{Q}$, if $x=0$ define $ 0 _2 = 0$. If $x \neq 0$, write $x = 2^{k} \frac{a}{4}$, $a, b, k \in \mathbb{Z}$, $b \neq 0$; a, b, dd . Then define $ x _2 = 2^{k}$. This is the 2-adic norm on \mathbb{R} . In fact it satisfies a stronger form of (iii), the ultrametric inequality $ x + u \leq \max s x $ $ u \leq x + u $.
C C [1x+A]1 (A.)

$\Sigma.g. \ \tilde{z}^{+}_{1}+\tilde{f}_{1}\ _{2}^{-5}$	$\left\ \frac{1}{42} \right\ _{2} = \left\ \frac{1}{42} \right\ _{2} = 2$	$= \max \frac{3}{2(2)} \left\ \frac{2}{2} \right\ _{2}$	$\left(\frac{5}{14}\right)^{2}$ = 2	
$\left\ \frac{20}{21}\right\ _{2}^{2}=\frac{1}{4},$	$\left\ \frac{5}{H}\right\ _{2} = 2$	$Ae: \ \frac{20}{24}\ _{2}^{+} \ \frac{5}{14}\ _{2}^{-}$	$\sim 2^{\perp}$	2.25.
A basic open while σ $B_{\varepsilon}(0) = \{x \in \mathbb{Q} \mid \\ \mathbb{P}(0) = \{x \in \mathbb{Q} \mid \\ \mathbb{P}(0) = \{x \in \mathbb{Q} \mid \\ \mathbb{P}(0) \in \mathbb{Q} \}$	$2 = 2800 \ books \ like$: $ x _{2} < 2 \frac{3}{2} = \frac{3}{2} \frac{3}{2} \cdot 0 \frac{1}{2}$	ET a ever	dd 3	
Every point in the x llx-yll2 y	hall is a centre of the Then two of the sides	ball ie. if ce of this triangle	B ₁ (0) then have the	B ₁ (c) = B ₁ (o). Some
	length is the tri			
$a(x_1,z) \qquad (y-z)_2 = x-z _2$	2	ingle is no see	• • • • • • • •	· · · · · · · · · · ·
$a(\mathbf{r}, \varepsilon) \qquad (\mathbf{y} - \mathbf{z} _{\mathbf{z}})$	$\begin{array}{c} \frac{1}{2} \\ \frac{1}{2} \\$	20.000		
$a(\mathbf{r}, \mathbf{z}) (\mathbf{y} - \mathbf{z} _{\mathbf{z}})$	$ \begin{array}{c} \frac{1}{2} \\ \frac{1}{1629} \end{array} $	20000.		

1+2+4+8+16+32+64+--- = -1 The partial suns 1, 3, 7, 15, 31, 63, ... converge to -1 in the 2-adic norm. Note: If $(x_n)_n$ is a sequence of points in a top. pace X, we say $(x_n)_n$ <u>converges</u> to $x \in X$ if for every open noted U of π , $x_n \in U$ for all a sufficient large. (This means: for all U open noted) $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$ $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$ $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$ $(x_n \cdot x_n \in U$ $(x_n \cdot x_n \in U$ $(x_n \cdot x_n \cdot x$ In place of arbitrary open ublds of x, it suffices to check basic open ublds. For metric topology, it suffices to check open balls. In this case, $\pi_n \rightarrow \chi$ provided that for all $\epsilon > 0$, there exists N such that i.e. $d(x_n, x) < \varepsilon$ whenever n > N. In our example above, $d(x_n, x) = 2^n \rightarrow 0$ as $n \rightarrow \infty$. $\|2^n\| = \frac{1}{2^n} \rightarrow O \quad ao \quad n \rightarrow \infty.$ Find the inverse of 5 mod 64.

In \mathbb{Z}_{672} , $\frac{1}{5} = \frac{1}{1+9} = 1-4+16-64$ = $1-4+16$ = 18.	+ 256 -1024 + Eero
Eq. in Z with the finite complement converges. It converges to 22.	topology, the sequence $(n)_{n} = (1, 2, 3,)$
$(n)_n \longrightarrow 22.$	In fact for every $a \in \mathbb{Z}$, $(a)_n \rightarrow a$.
	Theorem IF X is Hausdorff, then every sequence in X has at most one limit. (it converges to at most one point.)
• • • • • • • • • • • • • • • • • • • •	5 Proof Suppose att in a Hausdorff space X where a sequence (xin), 79 (x) ~ h Choose disjoint open
Then sick n> max [N1, N2]	There exists N. such that respectively.
obtain a contradiction.	$x_n \in U$ for all $n > N_i$; also N_2 such that $x_n \in V$ for all $n > N_2$.

we in g	pre-fer to wr general.	ite $(x_n) \rightarrow a$	rather than	lion xu = 9 n-700	
In a Ø. X	my top. space, are closed	closed sets are	the complements	of open sets.	
If K Arbit	(, K' are closed trany intersection	then KUK is a	closed. (So finite and closed.	mions of closed	sets are closed.)
De M	lorgen laws:	$X - \left(\bigcup_{\alpha \in \mathbf{I}} A_{\alpha}\right) = \left(\bigcup_{\alpha \in \mathbf{I}} A_{\alpha}\right)$	$\int_{\mathbf{I}} (X - A_{\alpha})$	· · · · · · · · · · · · ·	· · · · · · · · · · ·
· · · · ·	· · · · · · · · · · · ·	$\chi - (\bigcap A_{\kappa}) =$	$\bigcup_{\kappa \in \mathbf{I}} (X - A_{\kappa})$	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · ·
Given a the	an infinite set	X, the finite con and X itsef.	plement topology	hes as its clo	sed sets
Let smal	X be a top flest closed so	. space. Given A t containing A	$\subseteq X$, the closure i.e. $\overline{A} = \bigcap \{K \subseteq K \leq I\}$	x = of A is X : K closed,	the (unique) $K \ge A$.
The in	eterior of A = U {UC	is the largest of A: U open in X }.	pen set contained i (X-A) = X-	\overline{A} , i.e. \overline{A} ; $\overline{X} - \overline{A} = X$	

Theorem There are infinitely many primes. Known proofs: Euclid's proof (elementary) Euler's proof (analytic proof: 27 diverges) This proof is topological. Proof form a topology on X=Z whose basic open sets are the arithmetic progressing ..., -6, -1, 4, 9, 14, 19, ... for example. ...-6,-1, 9, 14, 19, ... for example. Every nonempty open set is infinite. Suppose there are only finitely many primes : (PI < 00 is the set of all primes {-1, 13 = {a e I : a is not divisible by any prime }. = A fack: a is not divisible by p } $U_{a,p} = \{ x \in \mathbb{Z} : x \equiv a \\ modp \}$ (U, U U, U U, U U U, P, P) is open. However it has only 2 elements, a contradiction More generally, let G be a group. Consider the topologn on G whose basic open sets are cosets of subgroups $H \leq G$ of finite index, i.e. $gH = [gh: heH], [G: H] < \infty$.

T2: Hausdorff \odot \odot T1: Points are closed i y T₁: Points are closed (i) 'y If x∈ X and y≠ x, then there is an open T₂ ⇒ T₁. Exercise: Give an example of a top. space voluch is T₁ but not T₂. not Tz. One answer: the finite complement topology for an infinite set. Let $f: X \rightarrow Y$ be any function. For any $B \subseteq Y$, the preimage of B = Xunder f is $f'(B) = \{x \in X : f(x) \in B\}$. Similarly, if $A \subseteq X$, the image of A in Y is $f(A) = \{f(a) : a \in A\}$. In general $f(f(A)) \subseteq A \subseteq f'(f(A))$ Now let X and Y be top. spaces, i.e. (X, J) and (Y, J'). A function $f: X \rightarrow Y$ is continuous if the preimage of every open set (in Y) is open (in X); i.e. for every $U \subseteq Y$ open, $f'(U) \subseteq X$ is open. Exercise: Convince yourself that the "standard" definition of continuity for functions R" > R" is just a special case of this. (for the standard topologies on R and R).

Theorem If f: X -> Y and g: Y -> Z are continuous, so is gof: X -> Z. Proof If $U \subseteq Z$ is open then $g'(U) \subseteq Y$ is open so $f(g'(u)) \subseteq X$ is open. when are two topological spaces X, Y "the same"? $(X \simeq Y : X, Y \text{ are homeonophic$ $This means there is a bijection <math>X \rightarrow Y$ taking one topology to the other. I.e. there is a bijection $f: X \rightarrow Y$ such that f, f are continuous. Eq. X is R with the standard topology; Y is R with the finite complement topology; Z. K. IR with the discrete topology; W is R with the indiscrete topology {Ø, R} $Z \xrightarrow{\iota} X \xrightarrow{\iota} Y \xrightarrow{\iota} W$ where $\iota(x) = x$. If J, J are two topologies on X, we say finist coarsest topology topology J' is finer than J if J'7J on IR (J' is a refinement of J) (J' is coarser than J if J'C J Eq. The finite complement topology (J' is coarser than J if JC J on X is the coarsest topology for which points are closed.

i.e. any topology in which points are closed is a refinement of the finite complement topology.
Subspace Topology Let $A \subseteq X$ where X is a topological space $X = (X, J)$. The topology A inherits from X in the most noticed way is the
Eq. $(0,1) = \{a \in R: 0 \le a \le 1\}$ is neither open nor closed in R but it is closed in $[0,1]$ and in $[0,00)$ since $\{0,1\} = \{-1,1\} \cap \{0,1\} = \{a,b\} \cap \{0,1\}$
If f: A -> R ^m where $A \subseteq R^m$ we say f is continuous if it is continuous relative to the standard topology of R ^m and the subspace topology on $A \subseteq R^n$.
· · · · · · · · · · · · · · · · · · ·

 $f: R \rightarrow R$ Eg. not continuous Continuosa $f: (-\infty, 0) \cup (0, \infty) \rightarrow \mathbb{R}$ If f: A -> R^m has f(A) EB we might as well think of f as f: A -> B. To say f: A -> R" is continuous is equivalent to saying f: A -> B is continuous. Suppose $f: A \rightarrow B$ is continuous and let $U \subseteq \mathbb{R}^m$. Then $f'(u) = f'(u \cap B)$ is open in A. Similarly one proves Similarly one proves the converse. Given $A \subseteq X$ where X is a top. space, there is an inclusion map $\iota: A \longrightarrow X$ $\iota(a) = a$. (one-to-one; not onto in general). The subspace topology on A is the coarsest topology for which the inclusion map ι is continuous.

Given USX open, i'(U) = UNA $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ AU (BnC) = (AUB) n (AUC) Quotient Topology Suppose f: X->Y is onto. Given a topology on X = (X, J) the most natural way this gives a topology on Y is by taking the finest topology on Y for which f is continuous. X A Möbius strip The quotient There are three ways to think of this situation. (i) Identify (collapse) certain points of X together (ii) We have an equivalence relation on X. topology on Y is the firlst fopology on Y map f: X-> Y is continuous. (() A partition of X.

The topology on Y= X/f {V⊆Y: f(V) is open in X}. w X/~ To show this is a topology, use $\bigcup_{\alpha} f(A_{\alpha}) = f(\bigcup_{\alpha} A_{\alpha})$ $\bigcap_{\alpha} f(A_{\alpha}) \ge f(\bigcap_{\alpha} A_{\alpha})$ $\bigcup \tilde{f}(A_{\alpha}) = f(\bigcup A_{\alpha})$ $\bigcap_{\alpha} f(A_{\alpha}) = f(\bigcap_{\alpha} A_{\alpha})$ $\sin((-\infty, 0) \cap (0, \infty)) = \sin \emptyset = \emptyset$ $Sin((-\infty, \overline{0})) = (-1, 1)$ $Sin((-\infty,0) \cup (0,\infty)) = [-1,1]$ $\sin((0,0)) = [-1,1]$

(closed) annulus 1/// A ~ (i) closed disk ×1/14 ~ Möbius strip No two of the examples lested here are homeomorphic the is torus Klein bottle not embeddable in p3 -Una PTR = real projective plane identify (1/1/ lean S' (2. sphere)

boundary ~ S! boundary= S In R³ consider the following two subspaces Is X ~Y ? Yes. S = n-sphere \simeq unit sphere in $\mathbb{R}^{n+1} = \{(x_0, \dots, x_n) \in \mathbb{R}^{n+1} : \geq x_i = 1\}$ S'= $S^2 = (I_1) \qquad S^3 = R^3 v \{\infty\}$

ℝ ∾ ((open interval)	, ⁰⁰⁾ a < 6			· · · · · · · · ·
An exan	nde of a homeonst	phish f: R	→ (0,00) is	f(x) = - +	<u>e*</u> · e *
R ~ (0,	$i) \notin \left\{ \begin{bmatrix} 0,1 \end{bmatrix} \\ \begin{bmatrix} 0,1 \end{bmatrix} \right\}$	luy is (0,1) #	[o,1) ?	····································	
If we can true in $(0, \frac{1}{2}) \cup (\frac{1}{2})$	more any point of [0,1) which has 2,1) is disconvected	(0,1), what's a point 0 m since it is	left is disconstant shose removed les a disjoint curio	ected. This eves a conne of two open where st u	is not ited set (0,1) sets.
Det . A nonempty In other . (clopen	open sets in X. words, X is conne means both open	If X is w ited its its and closed)	of disconnected, only clopen set	then it is at a contract of the contract of th	are Connected. 2nd X

[0,1] is connected. This is a theorem in analysis. Outline of argument: Suppose $[0,1] = U \sqcup V$ where U, V are nonempty open. $0 \in U$ without loss of generality. So $[0, \varepsilon) \subseteq U$ for some $\varepsilon > 0$. How large can ε be? $\{ \epsilon : [0, \epsilon) \subseteq U \}$ is a nonempty set with upper bound 1 So there is a least upper bound. (supremum) Is this supremum in U or in V? Either way leads to a contradiction. If we remove any point from (0,1) ~ RUR which is disconnected. This is not true for [0,1). Q is disconcerted (in the standard topology in IR) $Q = U \sqcup V$ where $U = \{x \in Q : \dots x < \sqrt{2}\} = Q \cap (-\infty, \sqrt{2})$ $V = [x \in Q: \dots x > \sqrt{2}] = Q \cap (\sqrt{2}, \infty)$ Q is totally disconnected:

An interval in R is the same thing as a connected subset of R.
Theorem R is connected.
We'll talk about the form dations of it a line lates, including completenes.
These A continuous image of a connected space is connected.
y is connected.
Hook Suppose $Y = U \sqcup V$ where $U, V \subseteq T$ are open. (hen $X = F(U) \sqcup F(V)$ where $F(U)$, $F(V)$ are open in X. So one of these, say $F(U)$, is empty.
So U= Ø. This means Y is connected. [] In a video I sent you, we showed R is connected.
Corollary [0,1] is connected. Define g: R-> [0,1]
Definition A path from x to y in X is a continuous (x)
Function $Y: [0, 1] \longrightarrow X$ such that $Y(0) = x$, $Y(1) = y$.
I is path-connected it for any x, y E N, were is a path from x to y int.

Theorem IF X is path-connected then X is connected. Proof Suppose $X = U \sqcup V$ where $U, V \subseteq X$ are moneurgity open. Let $x \in U$, $g \in V$. If X is path connected there is a path $T: [0,1] \rightarrow X$ with Y(0) = T, T(1) = Y. Then $[0,1] = \gamma(u) \sqcup \gamma(v) = \gamma(x)$, a contradiction since [0,1] is connected and T(U), T(V) are disjoint nonempty open. The converse of the theorem is false. An example of a space that is connected but not path-connected : XCR X= Z(x, sin x): x≠ 0Z U ([o]×[-1,1]) Details: See Munkres. Let Y, Y be two paths in X from interval on y-axis $\gamma(0) = \gamma(0) = \chi$, $\gamma(1) = \gamma'(1) = \gamma$. Then T, Y' are homotopic if

there is a map $[0,1] \times [0,1] \longrightarrow X$ $\gamma_{(t)} = \gamma_{o}(t)$ 7 y $(s,t) \mapsto \gamma_{s}(t)$ Y(t)= 7,(+) such that $\gamma_s(o) = \pi$, $\gamma_s(i) = \gamma$ for all $s \in [0,1]$ $\gamma(t) = \gamma(t)$ for all $t \in [0, 1]$. $\gamma(t) = \gamma'(t)$ We think of $\gamma'_{5}(t)$ as a "continuous deformation" from T(t) to T(t). (homotopy) A closed curve based at $x \in X$ is a curve from x to x. The null curve based at $x \in X$ is the curve $[0,1] \longrightarrow \{x\}$. is homotopic to a will curve, then IF every closed curve in K X is simply connected. So this is not homeonoghing Eg. () is connected but not simply connected. annulus to a closed kisk ().

We say x -> x < X if for every open which Let (Xm) , be a sequence in X U of x in X, beyond some point in the sequence all remaining terms are in U i.e. there excists N such that xn E U whenever a > N. (We say xn E U for all sufficiently large n, i.e. xn EU stenever n >> 1.) (x_1, x_2, x_3, \cdots) The full definition of x -> x is . For every open which it of x in X, there exists N such that $x_n \in U$ sherever n > N. Theorem Let f: X -> Y be continuous where X, Y are top. spaces. If Mur x in X then f(x_) -> f(x) in Y. Tre X = X = K + . f(x) f(x) + f(x) Y Proof Let V be an open nobled of f(x) in Y. Let U = f'(V) which is open in X since f is continuous. Note that $x \in U$. There exists N such that So $f(x_n) \in V$ for all n > N. The U for all n>N.

Is the converse true? Namely if f: X->Y maps convergent sequences to convergent sequences, does this mean f is continuous? In other words, suppose $f: X \rightarrow Y$ such that whenever $x_n \rightarrow x$ in X, we have $f(x_n) \rightarrow f(x)$ in Y. Must f be continuous? Yes for metrizable spaces; no in general. Metrizable spaces are first countable : there is a countable basis of open nobles at every point. Given $q \in X$ where X is a metric space, B_E(q) = {x \in X : d(x, a) < E } is a collection of basic open ablids at a There are unconstably many of these. The open nords B, (a) (n=1,2,3,...) suffice for doing to pology. $X_n \rightarrow X$ iff for all $m \ge 1$ there exists N such that $x_n \in B_1(x)$ for all $X_n \rightarrow X$ iff for all $m \ge 1$ there exists N such that $x_n \in B_1(x)$ for all $n \ge N$. The balls $B_1(a)$, $a \in X$ generate all the open sets as a basis. $m \ge 1$ first comtability of a top space says that we have a comtable collection of basic open ublids at each point (a local condition). Metric spaces are first comtable. Rⁿ has a stronger property: it is second contable meaning it has a countable basis for the entire topology $\{B_1(a): a \in \mathbb{R}^n\}$.

Theorem for first comtable spaces, a function is continuous iff it maps convergent sequences to convergent sequences. This is an inevitable result of the fact that sequences are inhorently conntable. Remark: Second contability is strictly stronger than first constability. Beyond comtable : Ordinals $\{\phi, \{\phi\}\} = 2$ $\int_{-1}^{1} = \{0, 1\} = 0$ $\int_{-1}^{1} = \{0, 1\} = 0$ Recursive construction: Each ordinal is the set of all the smaller ordinals. A ordered <u>set</u> (S, <) is a set S with a binary relation 's' on S sotisfying • Given x, y \in S, exactly one of the state ments x < y, x = y, y < x is true ("trickotomy property"); If x < y < z then x < z ("transitivity"). A well-ordered set is a totally ordered set in which every nonempty subset has a least dement. Eq. for the usual order, (N, <) is well-ordered; (Z, <) is not [0, 0) is not well-ordered.

Every well-ordered set is order-isomorphic to a unique ordinal. So the ordinals are the camonical representatives of the well-ordered sets. Well ordered sets are exactly the sets on which we can do induction. Every set an be not ordered (the well-ordering principle). In ZEC : Zermeles-Fraendel + Axion of Choice, the Well-Ordering Principle is a theorem. So is Zorn's Lemma. In ZF, the following are equivalent: · Axion Choice Well Ordening Principle · Zorn's lemma Transfinite Induction Copy of Copy of (x, <) (B, <) If a and B are ordiacts, then

$ \begin{array}{c c} & & \\ & 2 \\ 0 \\ \hline \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ \hline \\ \hline \\ \hline \\ 0 \\ \hline \\ \hline$	$ \begin{array}{c} \omega^{2} + \frac{\omega}{\omega} + 2\omega \\ + + + + + $	· · ·
· · · · · · · · · · · · · · · · · · ·	$= \omega^2 \qquad \omega^$	
cu2 = w + w	et tiest uncontable ordinal	•••
$2\omega = \omega$		R
$\omega = \omega_{\rm c}$	the order topology on an ordinal λ (B,00) CF has subbasis {x <x :="" <math="" each="" for="" xe="" xe}}="">\lambda</x>	2
$ \omega = 95$	$\{x > \beta : x \in \lambda\}$	
· · · · · · · · · · · · · · · · · · ·	Eq. $\{x \in \lambda : \beta < x < \alpha\} = (\beta, \alpha)$	
Eq. $\omega + 1 = \{0, 1, 2, \dots, \{0, 0\}\}$	Les open sets (β, α) $(\beta, \alpha \in \omega + 1)$ $[0, \alpha) = \{x \in \lambda : x < \alpha\}$ $(\beta, \omega]$ $(\beta \in \omega + 1)$	
· · · · · · · · · · · · · · · · · · ·	and unions of these i.e. these sets form a basis.	
Eq. $\chi = \omega_{i+1} = [\sigma, \omega_i]$	In X, w, does not have a comptable local basis	

$w = \{0, 1, 2, \dots\}$	
$\omega_{+1} = [0, \omega] = \{0, 1, 2, 3, \dots, 1, 0, 9, \omega\}$	$ \begin{array}{c} $
$k = \omega + 1 \simeq \{0, \frac{1}{2}, \frac{3}{3}, \frac{4}{3}, \frac{4}{5}, \dots, \{V\}\} \subset \mathbb{R}$	(subspace topology)
I is the "one-point compactification" of	w , $\frac{1}{23}$
S' is the one-point compactification of The	$\mathcal{R} \simeq (0, i)$
$S^2 R$	
$S^{n} \cdots R^{n} (n \ge 1)$	· · · · · · · · · · · · · · · · · · ·
A topological space X is compact if e	wery open cover of X has a
finite subcover, ie. if X = Ulla	, U.S.X open, there exist
k≥ 1; a,, a ∈ A such that X = Ua	VUder V. VUder (See my
(#) (*) (*) (*) (*) (*) (*) (*) (*) (*) (*	the local has had entered
But this statement depends on the clip	ice of metric.

The new metric $\widetilde{d}(x,y) = \min \{ d(x,y), 1 \}$ on \mathbb{R}^n defines the same topology on \mathbb{R}^n at lad metric (the standard topology) [0,00) is a closed bounded subset of R" with respect to i but it is not compact. w (with the order to pology) is a discrete topological space. You can also see this by thinking of $\omega \simeq \{0, \pm, \mp, \mp, \mp, \cdots\} \subset \mathbb{R}$. Every point is isolated. $\chi = [0, \omega] = \omega \cup \{\omega\} \simeq -$ is compact. This can be seen from (it) above or from the definition of compactness. If $\{U_{\alpha}\}_{\alpha\in A}$ is an open cover of $X = [0, \omega]$ then there exists $w \in A$ such that $\omega \in U_{\alpha}$ which doe covers $(\beta, \omega]$ for some $\beta < \omega$ $(\beta \text{ is finite})$. There are only finitely many elements $\alpha \leq \omega$ and these points are covered by finitely many U_{α} 's. Together with U_{α} we have a finite subcover of X. Every ordinal is either a "successor ordinal at 1 = a U { k } "(init ordinal" eg. w, w², ..., w³, w³, w₁, ... O is also a limit ordinal 1, 2, 3 ..., co+1, w+2,... If I is a limit ordinal, then I is compact If it is any ordinal, [0, 2] is compact.

let X be a top. Space and let A S X. A limit point or accumulate of A is a point x & X such that every open night of x has a point of A than x itself i.e. every "deleted" night U-Ex3 has a point of A.	oint on point
Eg. the limit points of $(0,1) \subset \mathbb{R}$ in \mathbb{R} are $[0,1]$. The limit $\cdots [0,1] \cdots [0,1]$.	
In $X = [o, w] = w \vee \{w\}$, w is a limit point of w.	· · · · · ·
$ \begin{array}{c} \bullet $	
$ I_{V} \Lambda = \{0, w_{1}\}, \omega_{1} is a (init point of W, & uure is no sequence in w, Gonverging to w_{1}. $	
An example of 4 discontinuous map f: X -> Y which maps covergent sequences to Sequences?	convergait

•••	f: X → X					• •	(X =						[o, w,])					ω, -												••••	•	• •	 •	• •
· · ·	· · ·	α		7 7	9	· · ·	7 f	<u>م</u>	e	<i>.</i> ,	· · ·		. e.	¢,	< (•	· · ·	•	•				•	- • 4		· · ·	•	•	· · ·	•	• •	 •	• •
· ·	• •), F	~	• •	 . . .		• •				•		•	•	• •	•	• •	•	•	· ·	•	• •	•	· ·	•	• •	•	•	· ·	•	• •	 •	• •
· ·		· · ·		•••	•	· ·			• •		•••	•	• •	•	•	••••	•	• •	•	•	••••	•	••••	•	••••	•	•••	•	•	••••	•		 •	• •
••••	• •	· · ·		•••	•	••••	• •	• •	• •		•••	•	• •	•	•	••••	•	••••	•	•	••••	•	••••	•	••••	•	••••	•	•	••••	•		 •	• •
· ·	• •	· · ·		•••	•	••••		· ·	• •		•••	•	• •	•	•	· ·	•	• •	•	•	••••	•	••••	•	••••	•	••••	•	•	••••	•		 •	• •
· ·	• •	· · ·		•••	•	• •	• •	• •	• •		· ·	•	• •	•	•	• •	•	• •	0	•	• •	•	• •	•	••••	•	• •	•	•	• •	•		 •	• •
· ·	• •	· · ·		••••	•	• •		• •			· ·	•		•	•	• •	•	• •	•	•	• •	•	• •	•	· ·	•	• •	•	•	· ·	•		 •	
· ·	• •	· · ·		••••	•	• •		• •			· ·	•		•	•	• •	•	• •	•	•	• •	•	• •	•	· ·	•	• •	•	•	· ·	•		 •	
· ·	• •	· · ·	• •	••••		• •		• •			• •	•		0	•	• •	•	• •	•	•	• •	•	• •	0	• •	•	• •	0	•	• •	•	• •	 •	• •
• •	• •	· · ·	• •	• •	•	• •			• •		• •	•	• •	•	•	•••	•	• •	•	•	•••	•	• •	•	• •	•	•••	•	•	•••	•		 •	• •