

A fitter on X is a collection Fr consisting of subsets of X such that
• $\emptyset \notin \mathfrak{F}, X \in \mathfrak{F}$
• IF AEF and AEBSK, then BEF.
• IF A, A'EJ then A JA'EJ.
Every uttratitler is a filter, but not conversely.
A collection Sof subsets of X has the finite intersection property (fip.) it
As all $A_1, \dots, A_n \in \mathcal{O}$ $A_1 \cap A_2 \cap \cdots \cap A_n \neq \mathcal{O}$
A Litter has the fine. If S is any collection of subsets of X having fine. then S generates a
tiller: Fr = i supersets of finite intersections of sets in Sq
= $\{B \subseteq X : A_1 \cap A_2 \cap \cdots \cap A_n \subseteq B \text{ for some } A_1, A_2, \cdots, A_n \in S \}$.
This is the (anique) smallest collection of enlocets of X which contains I and is a titles.
If J. J' are filters on X, we say J' refines J if J G J'.
If F. F.' are fitters on X, we say F' refines F if FGF. The collection of all fitters on X is partially ordered by refinement.
Given a filter F on X, the collection of filters refining F. has a maximal member by Forn's Lemma. This is guaranteed to be an uttrafilter.
Assume we are given a nonprincipal uttrafiter & on $\omega = \{0, 1, 2, 3, \dots, 3\}$. Construction of the nonstandard real numbers (hyperreals) *R or R* or R.
IR and IR are examples of ordered fields. IR and IR are very similar from first appearances.
eg. If $f(x) \in R[x]$ or $R[x]$ (polynomial in x) of hegree 3 then f has a root (in R or R' respectively). If $f' > 0$ then this root is unique. Positive dements have a unique square root.

But: R is an Archimedean field: it has no infinite or infinitesmal elements. More precisely, if
a E R satisfies $0 \leq a \leq \frac{1}{n}$ for all $n = (2, 3, 4, then q = 0.$
a E R satisfies $0 \le a < \frac{1}{n}$ for all $n = (2, 3, 4, then q = 0.R has infinitedal elements (it is Non-Archimedia field).$
Construction: Start with $\mathbb{R}^{\vee} = \{(q_0, q_1, q_2, q_3, \dots) : q \in \mathbb{R}\}$ (all sequences of real numbers).
4 ¹
Given a, b & R we can add/audtiply/subtract pointwise
$a_{\pm}b = (a_{\pm}b_{1}, a_{\pm}b_{1}, a_{\pm}b_{2}, \cdots)$
$ab = (a, bo, a, b, a_2 b_2,)$
ab = (abo, ab, ab, ab,) making R ^{av} into a ring with identify 1 = (1,1,1,1,). It's not a field; it has zero divisors e.g.
$(i_{0},i_{0},j_{0},\cdots)(o_{1},i_{0},i_{1},\cdots)=(o_{1},o_{2},o_{2},o_{2},o_{2},\cdots)=O \in \mathbb{R}^{\mathbb{W}}.$
But take an uttrafilter U on w (U nonprincipal).
If $a_i = b_i$ for all $i \in U \in U$ then $a_i \sim b_i$ (equivelence mod U).
$J_{k} = \{b_{i}s \in (0, 1, 0, 1, 0,) \sim (1, 1, 1, 1, 1,) = 1 \\ (1, 0, 1, 0, 1, 0,) \sim (0, 0, 0, 0, 0, 0, 0) = 0$
Given $a, b \in \mathbb{R}^{\omega}$ let $A = \{i \in W : a_i = b_i\}$. Either $A \in \mathcal{U}$ (in which case $a \sim b$) or $w \land A \in \mathcal{U}$ (in which
case $a \neq b$. $\hat{\mathbf{R}} = \mathbf{R}^{\omega} / \alpha = \{ [a]_{\omega} : a \in \mathbf{R}^{\omega} \}, [a]_{\omega} = equir. class of a = \{ x \in \mathbf{R}^{\omega} : x \sim a \}.$
It is a field. If $a \neq 0$ then actually $a \neq 0$ ([a] \neq [0],) so $i \in \omega : a \neq 0$? $\in \mathcal{U}$. (anost coordinates
of a even nonzero). Then $\frac{1}{a} = (\frac{1}{a_i} : i \in \omega)$
q. = 1 A any where that a:=0, ignore or replace by 1.

R is an ordered field. Given a, b & R, either a < b or a=	6 or 6<9.
$\omega = \{i \in \omega : q_i < b_i\} \sqcup \{i \in \omega : q_i = b_i\} \sqcup \{i \in \omega : b_i < q_i\}$	
Exactly one of these three sets is an utrafitter set. Corresponding	
$Q \subset \mathbb{R} \subset \mathbb{R}^{\omega}$ $\stackrel{\sim}{=} Given a \in \mathbb{R}$, identify with $(a, a, q, q,) \in \mathbb{R}^{\omega}$. The structure	tis way R is embedded in R ^w .
standard The topology on $\widehat{\mathbb{R}}$ is the order topology: basic open sets $q_ib \in \widehat{\mathbb{R}}$.	are open intervals (9,6),
Eq. $z = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots) \right]_{n} \in \mathbb{R}$ is an infratesmal.	$ Q = \frac{1}{2}, R = 2^{\frac{1}{2}}, R = 2^{\frac{1}{2}}$
Fig. $z = [(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots)]_{n} \in \mathbb{R}$ is an infratesmal: $\frac{1}{2} = [(1, 2, 3, 4, 5, \cdots)]_{n} \in \mathbb{R}$ is infinite.	$ Q \subset \mathbb{R} \subset \widehat{\mathbb{R}} $ $ (\mathbb{R}^{\omega}) = \mathbb{R} ^{ \omega } = (2^{\mathcal{H}_0})^{\mathcal{H}_0} = 2^{\mathcal{H}_0 \mathcal{H}_0} = 2^{\mathcal{H}_0} $
Every hyperreal is either infinite (at iR , $ a > a$ for every positive integer a unique standard part $st(a) \in IR$ (the closest real number to a).	m) or it's bormded in which case 4 here
To compute $f'(x)$ where $f(x) = x^2 + 3x + 7$ using constandard analysis, let $a \in \mathbb{R}$, and Pick $\hat{a} \in \hat{\mathbb{R}}$, $st(\hat{a}) = a$, $\hat{a} - a = \varepsilon$ is an infiniteeinal. $\hat{f}(\hat{a}) - \hat{f}(\hat{a}) = \hat{f}(a+\varepsilon) - \hat{f}(\hat{a})$	
$\frac{f(a+2)-f(a)}{2} = 2a+3+2 , sf(2a+3) = 2a = f'(a).$	

Warm-up to the proof of Tychonoff's Theorem. Let S be a collection of subsets of X. S has the finite intersection property (f.i.p.) if every finite intersection
Let S be a collection of subsets of X. I have the trane investige property (T. 1. p.) it around the
of sets in S is nonempty i.e.
$S_1, S_2, \dots, S_n \in S \implies \exists \cap S_2 \cap \dots \cap S_n \neq \emptyset.$
(Recall: if S has f.i.p. then supersets of finite intersections of sets in S is a fifter.)
Lemma 1.1 Let X be a top. space. Then the following are equivalent.
lis X is compact. (Every open cover of X has a finite subrover.) Evia complementation (are de Morganistas
(ii) If S is any collection of closed sets with fip. then (S = Ø.
Proof: exercise. fitter such that for every ASX, either A E U or K-A E U, not both.
An uttrafilter U on X converges to a point x e X if every would of x is in U. (A nobed is a superset of use write U x x in this case. (Rocall: The nobeds of x form a filter.) an open nobed.)
An uttrafilter U on X converges to a point x e X if every would of x is in U. (A nobed is a superset of We write U & x in this case. (Recell: The nobeds of x form a filter.) an open would.)
Much topology is readily formeliated in the language of altrafilters e.g.
· X is Hausdorff iff every utrafitter converges to at most one point.
. It is compact the every ultratitles converges to at least one point.
 X is Hausdorff ; ff every ultrafilter converges to at most one point. X is compact iff every ultrafilter converges to at least one point. A function f: X -> Y is continuous iff it maps convergent ultrafilters to convergent ultrafilters.
. A function f: X -> Y is continuous the it maps convergent waretrillers to convergent minution. <u>Theorem</u> 2.1(a) Let X be a top. space. Then Y is Housdorff iff every ultrafiller on X converges to at most one point of X.
at most one point of X.
Proof (=>) Suppose X is Hausdorff. Suppose U is an uttrafilter on X converging to two different points X = y in X. There exist U, V S X disjoint open sets with x e U, y e V. U(*) ()
points x = y in X. There exist U, V S X disjoint open sets with x e Q, y e V. "(*) (*)
Since USX, UE U. Similarly VEU. Then UNV = DE U. contradiction.
Since USX, UE U. Similarly VEU. Then UNV = DE U. contradiction. (=> Suppose every ultratitler on X converges to at most one point of X.

(\Leftarrow) Suppose every uttratitler on X converges to at most one point of X. Let $\pi \pm q$ in X. By way of contradiction suppose that $U \cap V \neq \emptyset$ for every open ublid to f_X and every open ublid V of y. Then Eopen ublids of r? U Sopen ublide of y? has fine. This generates a fitter which in turn retries to an uttrafille U. UNR, UNY a contradiction. So X must be Hausdonff. Theorem 2.16) Let X be a top. space. Then X is compact if every ultrafilter on X converges to at least one point of X. Proof (\Rightarrow) Suppose X is compact. Let \mathcal{U} be an ultrafilter on X. Suppose \mathcal{U} does not converge to any point of X. So for each $x \in X$, there exists an open while \mathcal{U}_x of x such that $\mathcal{U}_x \notin \mathcal{U}$. So $\{\mathcal{U}_x : x \in X\}$ is an open cover of X. So there is a finite subcover $\chi = \mathcal{U}_{\chi_{1}} \cup \mathcal{U}_{\chi_{2}} \cup \mathcal{U}_{\chi_{2}} \cup \cdots \cup \mathcal{U}_{\chi_{n}}$ for some $n \ge 1$; $\chi_{1}, \dots, \chi_{n} \in \chi$. So Uri e U for some i, contradiction. (⇐) Suppose every uttrafitter on X converges to at least one point of X. We must show that X is compact. Let S be a collection of closed subsets of X with F.i.p.; we must show ()S≠Ø. Now S generates a fitter which refines to an ultra fitter U2S. By assumption, US x for some point x ∈ X. We will show x ∈ ∩S. If not, then there exists K ∈ S such that x & K. Then X-K is an open nord of x. So X-K & U. But also K & S < U. contradiction. []

Ultrafilters gives the following characterization of open sets.
Theorem 2.2 Let X be a top. space, and let USX. The following are quindlant:
Lis U is open . U lits a wante to a mit of 11 we have 11 f 91.
cii) Whenever an attrafitter converges to a point rell, we have UEU.
Proof (=>) Trivial. Suppose U is open. Suppose also & is an uttratiller converging to a point REU.
Then UNXEL So LEU. IF ust the thoug is some xEL
Then UNXEU so UEU. Then UNXEU so UEU. (=) Suppose (ii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (ii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. We must prove U is open. If not, then there is some XEU (=) Suppose (iii) holds. Some XEU (=) Suppose (iiii) holds. Some XEU (=) Suppose (iiii
Such that over open that is a first of the f
Eopen ublids of x 3 U { X-U } has fire. Att Busice 1/691
It generates a fitter which votimes to an ultratitter U & x \in U, By cing UEU.
Also $X - U \in \mathcal{U}_{i}$ contradiction. \Box
Let $f: X \rightarrow Y$. Given an ultrefitter \mathcal{U} on X , f pushes \mathcal{U} torward to an ultrafilter f, \mathcal{U} on Y . This works just like for measures. If μ was a measure on X then for each measurable subset $A \subseteq X$, $\mu(A) \in [0, \infty]$. We'll be interested in probability measures so $\mu(A) \in [0, 1]$, $\mu(\mathcal{O}) = 0$, $\mu(X) = 1$, $\mu(A \sqcup B) = \mu(A) + \mu(B)$. "Measure" usually require somitable additivity (strongen than finite additivity) so when its only finitely additive we call μ a finitely additive measure. \mathcal{U} trafitters can be viewed as finitely additive measures. But $\mu(A) = S'$ if $A \in \mathcal{U}$.
This workes just like for measures. If a was a measure on X then for each measurable subset A C X w(A) E [0 07] Wa'll ha interested in productifity measures as w(A) E [0,1] w(O)=0.
u(K)= (u(AUB) = u(A) + u(B). "Measure" usually require commable additivity (stronger
than finite additivity) so when its only finitely additive we call us a finitely additive measure.
Ultrafilters can be viewed as finitely addrive measures. But $\mu(A) = {o if A \in U}$.
In general, measures on X give rise to measures on Y: For every BSY, M(B) = M(f(B)), Check: My is a measure on Y; it's the push-formand of M via f.

Special case: Let f: X - Y U uttra filter on X. Then the pushtorward of U
via f is $f \mathcal{U} = \{ V \subseteq Y : f'(Y) \in \mathcal{U} \}$ Check: this is an after filter on Y.
via f is $f \mathcal{U} = \{ V \subseteq Y : f'(V) \in \mathcal{U} \}$. Check: this is an after filter on Y. Theorem 3.2 Let X and Y be top. spaces and let $f : X \rightarrow Y$. Then the following are
equivalent:
is f is continuous
(ii) of maps convergent utratillers to convergent utratillers; more precisely " a site a
Proof (=>) Suppose f is continuous, and let q be an ultre filter on X such that q & reX. We must show that f q & f(x) & Y. Given an open nobid V of f(x) in Y, we must show that V & f q , i.e. show f (V) & q. Since f is continuous, f'(V) is an open when a f is continuous, f'(V) & q.
We must show that fight of f(x) EY. Given an open hold V of t(x) in I, we must
show that VE f. U, i.e. show F(V)EU. Xue + is communer, T(V) is an open
which of π , so $f(Y) \in \mathcal{U}$.
(*) Suppose (ii). We must show to is continuous. Let V L & be open; we must show to is continuous.
when $\phi(x)$, so $f(Y) \in U$. (\Leftarrow) Suppose (ii). We must show f is continuous. Let $V \leq Y$ be open; we must show that $f'(Y)$ is open in X . Let $x \in f'(Y)$ and \mathcal{U} be an ultrafiller converging to r : that $f'(Y)$ is open in X . Let $x \in f'(Y)$ and \mathcal{U} be an ultrafiller converging to r : f(Y) = f(Y) is open in X .
al Plu Ry assumption (1) T(1) V T(1)
Nohd of $f(x)$ in V , $V \in f_{4}(\mathcal{U})$ i.e. $f'(V) \in \mathcal{U}$. By Thum 2.2, $f'(V)$ is open. \square
Theorem 4.2 Let I be an ulfratiller on X= IT X, and let x= (x) & E X. Then I & r itt
$(\pi_{\alpha})_{4} \mathcal{U} \to \pi_{\alpha} \in X_{\alpha}$ for all α . $(\pi_{\alpha} : X \to X_{\alpha})$.
Proof (=) Suppose U & x = (xa), EX. Since The is continuous, (Tha), U & Xa by Theorem 3.2.

Theorem 4.2 (et U x EX	be an for a	ultrafil	Er on	χ= ;	₹		and	let,	r = (x.) _r e	χ.	Then	US	n if	+ + +
$(\pi_{a})_{4}\mathcal{U} \rightarrow \frac{Proof}{\mathcal{U}} (\neq)$	Suppos Given	se (Tr,); an arbit	U NX rony c	e X. Jen	- b ubhd	- all U	ra a an of r	d le ia X,	ert x we	2 (X m	k) _x € ust	X . l slow	We nu U E U	rst sl	eor	· ·
Without De	ss of g U = 1	eneralit $\pi_{\alpha}(U_{\alpha})$	y, U = (is TT X 3≠a	2 S B)	x l	ic oper (d	set		the	for	n N N N N N N N N N N N N N N N N N N N		· · ·	· · ·	· · ·
This for Theorem 5. Proof Let	sllows . 1 (Tycl	for The	IF	liera each N	anse X _*	is c	is compact uttraf	Citer	en so	(= 1	Mc;	we	must	shar	r the	t i
Proof Let U conver Xx is	ges to compact.	at leas	st one = (xa	point de	and	ster	U ·	י איז איז איז איז איז איז איז איז איז אי	* 9 This	-fel	= ^ « lows	from	some p Theor	oint ? Em ^c	f.2.	ince
Typical a		· · · · · ·		· · ·	· · · ·	· · ·	· · ·	· · ·	· ·	· ·	· · ·	· · ·		· · ·	• •	0 0

Let V be a normed vector space e.g. (R[[0,1]) or los= { bounded sequences at R ^w }, ie. II. II: V -> R satisfies
ie, III: V -> R satisfies
is v zo, and equality holds iff r=0;
·····································
$(m) \ cv \ = \ c \ \ v \ $ for all $c \in \mathbb{R}$, $v \in V$.
d(v, w) = 1/v-w/r. A bounded linear functional on V is a map f: V-> R such that
• f(au+bv) = af(u)+bf(v) for all q, be R; y, veR
• there exists (= R such that 1 f(v)) S C / v / tor all v e V.
V* = > bounded linear functionals on V 3 is a normed vector space (but larger than V)
$V^* = \{ \text{ bounded (inser functionals on V} \}$ is a normed vector space (but larger than V) for $f \in V^*$, $\ f\ = \sup \{ f(v) : v \in B \}$, $B = \min t \text{ ball in } V = \{ v \in V : \ v\ \le 1 \}$.
$d(f,g) = \ f-g\ $
$B^* = \{ f \in V^* : \ f\ \le i \} = \{ f \in V^* : (f(v)) \le \ v\ \text{ for } v \in V \}$
We can regard $B^{k} \subseteq [-1, 1]^{B} = \{ functions B \rightarrow [-1, 1] \}$ (B* consists of all functions $B \rightarrow [-1, 1]$
$B^{*} = \{f \in V^{*} : \ f\ \le i\} = \{f \in V^{*} : (f(v)) \le \ v\ \text{ for } v \in V\}$ We can regard $B^{*} \subseteq [-1, 1]^{*} = \{f_{inc}(tions B \to f_{i}, 1]\} (B^{*} contrists of all functions B \to f_{i}, i]$ which extend to a linear function on V). $B^{*} = uot compact in the \cdot topology. (unless dim V = dim V^{*} < \infty)$
B* is not compact in the II. I topology (mless dim V = aim V = a)
Fg. $V = loo$, $B = \frac{2}{(q_0, q_1, q_2, \dots)}$: $q \in R$, $ q_1 \leq \frac{3}{2}$ is corrected by open halls of radius $\frac{1}{2}$ but no finite number of these cover B. The point set $\frac{1}{(\frac{1}{2}, \frac{1}{2}, $
no finite number of these cover B. The point set {(±2, 22, ±2, ±2,)} B
· · · · · · · · · · · · · · · · · · ·

The product topology in $[-1, 1]^{5}$ is really the topology of "pointwise convergence" which is weaken than the norm topology i.e. if $f, f_1, f_2, F_3, \dots \in V^*$ then saying for the norm topology (If - fil - o as no = 0) is a much stronger statement than saying f -> f pointwise (for all ve V, f. (V) -> f. (v) as n -> 0) which is weaker. In this topology, Bt is embedded as a closed (topological) subspace of [-1,1]^B, hence Bt is compact. Given a top. Space X, we would like to embed X in a "nice" space that we think we understand. An embedding of X in Y is an injection $\iota: X \to Y$ such that the image $\iota(X) \subseteq Y$ is homeomorphic to X via ι . (ι is continuous and $i'|_{\iota(X)} : \iota(X) \to X$ is continuous. In this case X is identified as a subspace of Y. as a danse subspace Eq. a completion of a metric space (X, d) is an embedding of (X,d) lin a complete métric space (Y, d'). If moreover i preserves distances i.e. $d'(\iota(x), \iota(x')) = d(x, x')$ for all x, x' \in X) then i is an isometric embedding.

We regard Q ~ R as "the" completion of R : it is unique up to equivalence. 9179 We'll use: IP &: X -> Y is a continuous map, and if Y is Hausdorff, then f is determined by its values on a dense subset of X. (SS X is dense if every nonempty open subset of X meets S). This says: if f,g: X->Y are continuous and they agree on a dense subset SSX, then f=g. Proof Suppose $f \neq q$, i.e. there exists $x \in X$ such that $f(x) \neq g(x)$ in Y. Then (f(x)) ($\hat{Q}(x)$) Y there exist open ublids $f(x) \in U$, $g(x) \in V$, $U \cap V = \emptyset$. (f(x)) ($\hat{Q}(x)$) Y then $\hat{f}'(U)$, $\hat{g}'(V)$ are open ublids of $\pi \in X$. So there exists $s \in S \cap f(U) \cap g(V)$, so $f(s) = g(s) \in U \cap V$, contradiction. Go to the atlegory of real vector spaces (objects are real vector spaces; arrows (morphisms) are linear transformations). Given: U.V. vector spaces; SCU any set of vectors. mie Denver is a "miversal hub" for most LAR -> DEN Slights out of Laramie. Laranje for every T: U->V You are booking for a linear transformation vanishing on S, there is T: U->V vanishing on S (Tr=0 for all a unique T: U/S) ->V U T+ U/S) (S) = subspace spanned making this diagram amounte U++ (S) = subspace spanned i.e. T= ToT. LGA New York

The quotient U/{s} and in fact the map TI: U -> U/(s) is the migne such morphism making the above universal property hold. (up to equivalence). If TI: U -> U' coto had this universal property i.e. for every T: U-> V varishing on S, there is a unique T making the diagram U - V' ie Tor'= T then $U' \cong U/(S)$ and VBy uniqueness for the gof = id: 4/55 -> 4/(5) $fo \pi = \pi'$ Also fog= id: U'->U' 90 T = T $u \xrightarrow{\pi} u_{(S)}$ T > W(s) gof o T = T TT U' g id ido T U & ()f This is what we mean when we say U -> 1/kg) is "the" universal domain for maps on U vanishing on S. (Existence requires a construction; uniqueness follows from the universal property.)

Eq. in the category of groups ... objects are groups, arrows (morphisms) are group homomorphisms. Every group 6 comes with an "abelianization" \${6,6], adrally T: G ~ G/[GG] (the canonical homorphism) which makes this into the universal domain for morphisms G-> A (A abelian). I.e. given any f: 6 > A (A abelian) there exists a migule f: 6/16,67 > A making the diagram G T Strange Commute i.e. for = f. In the category Top who seebjects are top. 9 paters and arrows (underphisms) are A (continuous) X is complete Eq. Let X be a metric space. Then a completion of X is a map $\iota: X \longrightarrow \widehat{X}$ space such that for every $f: X \longrightarrow Y$ there is a unique \widehat{f} making this Theorem Every metric space has a completion and it is essentially unique. diagram commute: X - 1 > X 2 V チェキ・レ、 It requires moreover that the an embedding. Moreover (X) < X must be dense.

Eq. X = (Q, usual metric) has X = R as its completion. Eg. Compactification Given a top. space X, we want to define a kind of universal compactification of X, 1: X -> pX which is Compact Hausdorff and which is the universal object having this property ie. For every f: X -> Y where Y is ompact Hausdorff, there exists f: pX-> Y making the following commute: $\chi \longrightarrow \beta \chi$ ie. for= f A a a a a a g Theorem X has such a universal compactification 1: X -> BX Eff X is completely regular and theusdorff. In this case 1: X -> FX is unique and it's an embedding of X in BX as a dance subspace.

Compare: the one-point compactification XU [00] of a space X (where or of X) is a compact space containing X as a subspace i.e. X ~ XV 900}, X ~ x is an embedding, constructed as follows: In the new subset X C XV 900}, basic open noblds of x E X are same as in the original space X. Basic open ublids of ∞ are the complements of the compact subsets of X. compact subsets of X. Theorem Given X which is Housdorff and not compact, the construction above gives a compact extension $X \cup \{\infty\}$ iff X is locally compact is. every point of X has a compact which (i.e. every $x \in X$ has an open whild contained in a compact subset of X). It's easy to see that local compact wass of X is necessary; here we're saying it's also sufficient. Eq. R has a one-point compactification R²U goog ~ S² (the 2-sphere). $\mathcal{L}: \mathbb{R}^2 \to S^2$ embedding Stereographic projection for n71, the one-point compactification of R" is S" is the one point compactification. $\mathbb{R} \simeq -$

Compare: The miveosal (Stone-Čech) compactification of	$\mathbb{R} \cong (0,1)$ is $[0,1]$.
$(o, i) \qquad $	
The one point compactification lacks the universal property	•
$\sim \longrightarrow \qquad S'$	
f i f does not exist.	
· · · · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · · ·	
	ייייייייייייייייייייייייייייייייייייי
f f exists $\rho \to \rho$ $\beta(\rho,i) =$	

What is the Stone Ceck compactification of R ² ? R ² ~ open disk D= {(x,y) \in R ² : (universal)
Some different ways to compactify R ² : one-point compactification R ² -> R ² U \$003 ~ S ² i one-point compactification R ² -> R ² U \$003 ~ S ²
• One-point conspective plane (~ D V 2D where we identify antipodal points • P'R = real projective plane (~ D V 2D where we identify antipodal points on 2D ~ S')
• $\bar{D} = closed disk.$ This is $\beta R^2 - \beta D$.
The Stone-Čech compactification theorem is proved in 2 parts: is special case X is discrete; Note: Discrete Space are completely regular
cii) general case.
(n) general use. (are cis is not trivial! But it is the key to (ii). From (i), we get (ii) by taking a quotient. To prove cis, βX = ξ all uttrafillers on X ξ. = Stone Čech compactification of X
$X \xrightarrow{l} \beta X$ Given $x \in X$, $l(x) = \mathfrak{F}_{x} \in \beta X$ $\mathfrak{F}_{x} = \{A \subseteq X : x \in X\}$. discrete top. space $i \in i$
le l

If X is a finite discrete set then $\beta X = X$, $L: X \rightarrow \beta X$, $x \mapsto \tau$.	
$X \longrightarrow \beta k = X$ (X finite $\Longrightarrow X$ already compact).	
€ / Î=f in this Case	
What if X is infinite discrete? $\beta X = Suttratitiers on X }$. How big is $\beta X ?$ $ \beta X = 2^{2 X }$ (doubly exponential in $ X $.) Proof: not hard, see e.g. Keisler.	
K = 22 (doubly exponential in 1/1) 10007: abi nor , se e.g. Nersier.	
Eq. X countably infinite, $ X = K_0$, $BX = 2^{2^{K_0}} = $ functions $R \rightarrow R = \exists_2$	
Cantor: If X is infinite then $2^{ X } = \mathcal{B}(X) = number of subsets of X > X .$	
The number of topologies on K is 2° and the filling; From the filter 91 K is 91 C P(X) => 91 E P(P(X)) S = 10.01 × (P(P(X))) =	2 ² (K)
The number of topologies on X is $2^{2^{(K)}}$. Every uttrafilter U on X is $U \subseteq \mathcal{P}(X)$. $\Rightarrow \mathcal{U} \in \mathcal{P}(\mathcal{P}(X))$ $\{\Rightarrow \text{ No. of uttrafilter;} \}$ Every topology \mathcal{J} on X is $\mathcal{J} \subseteq \mathcal{P}(X)$. $\Rightarrow \mathcal{J} \in \mathcal{P}(\mathcal{P}(X))$. $\{\Rightarrow \text{ No. of topologies} \in \mathcal{P}(\mathcal{P}(X)) = Every$ topology \mathcal{J} on X is $\mathcal{J} \subseteq \mathcal{P}(X)$. $\Rightarrow \mathcal{J} \in \mathcal{P}(\mathcal{P}(X))$.	5
ACT mind BY = 22 if follows that	
Goollary If X is infinite then the under of topologies on X is 221.	
Grollary IF X is infinite then the number of topologies on X is $2^{2^{ X }}$. Proof The number of topologies is $\leq 2^{2^{ X }}$; see above. For the lower bound, if I is an u	Makilter
on & then UVERS is a pology on X. This gives an interceron in M	o. of topplaye
Suffrafillers on X 5 -> Stopologies on X 5	π{ [,2, · · · , π] · · · · · ·
>0 { topologies on X } > > ({ ultratillers on X } = 2	4
Remark: For a savel, the number of topologies on \$1,2,, af is	29
	355 6942

The topology on BX = { uttrafittors on X } has	basis { (A)	: ASX}	where	<a>=	{U e pX	: Ace
The map $A \longrightarrow \langle A \rangle$, $P(X) \rightarrow P(\beta X)$ satisfies		• • • • • •			· · · · ·	
• $\langle \emptyset \rangle = \emptyset$			• • • • • •		(x) = 3	
$\bullet \langle \mathbf{x} \rangle = \beta^{\mathbf{x}}$		$\rightarrow \beta \lambda$	• • • • • •		= </td <td>- <u>-</u></td>	- <u>-</u>
• IF AS B from <a> S 		f i	P · · · ·	_	all subs	ets of X
$\bullet \langle A \cup B \rangle = \langle A \cup \langle B \rangle$,		Con Qini	<u>א</u> ר כי
• $\langle A \cap B \rangle = \langle A \rangle \cap \langle B \rangle$						
• $\langle X - A \rangle = \beta X - \langle A \rangle$		IF f: X Y is con	->Y 3	Contic dorff	mous i	there there
• The map A ~> <a> is injective.			puri not	GAR C	à.v.	
It and the store. Cord theorem in the		is a nu Such bit			r · ph	
The proof of the Store. Cech theorem in the case X is discrete is easy.			алан так Ца н алан алан алан	· · · ·		
. Y - 1(X) CBX embods X as a dense						
ι: X→ ι(X) ⊆ βX embeds X as a dense discrete subspace of βX. If r ≠ r' in X						
then $(x) = \Im_{x} \qquad \bigcirc (x') = \Im_{x}, \qquad & \langle \{x\} \rangle =$	a de la cala de la					
$(\mathcal{L}_{x}) = \mathcal{F}_{x}, \qquad (x') = \mathcal{F}_{x},$	Jr.			• • •		
						• • •
			• • • • •			• • •