

Berustein Cantor. Schröder Theorem Let A, B be sets. If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|. I.e. if there is an injection $A \rightarrow B$ and an injection $B \rightarrow A$ then there is a bijection $A \rightarrow B$. Here IAIS [B] mæns there is an injection A -> B i.e. A is in one-to-one correspondence with a subset of B. This is equivalent to the existence of a surjection B-it under the Axiom of Choice. Bernstein-Cartor-Schröder Theorem uses ZF A B Eq. |(0,1)| = |[0,1]| but what is an explicit bijection? There is an injetion $(0,1) \rightarrow [0,1]$, $\pi \mapsto \pi$. So $|(0,1)| \leq |[0,1]|$. There is an injection $[0,1] \rightarrow (0,1), \ \chi \mapsto \frac{1}{3}(\chi+1), \ So [[0,1]] \leq [(0,1)],$ $|\mathbb{R}| = |\mathbb{R}^3| = |[0,1]| = |[0,1]^{>}|$

$[0,1] \rightarrow [0,1]^{S}, \pi \mapsto (\pi,0,0)$ is an injection. $[0,1]^{S} \rightarrow [0,1], (\pi,g,2) \mapsto 0.\pi, g_{1} \nota_{1} \chi_{2} g_{2} \nota_{2} \chi_{3} g_{3} \nota_{3} \chi_{4} g_{4} \nota_{4} \cdots$
$X = O. X_1 X_2 X_3 X_4 \cdots$ $y \in D. y_1 y_2 y_3 y_4 \cdots$
$z = 0.z_1 z_2 z_3 z_4 \cdots$
Theorem X = IR - 303 can be partitioned into lines. Use transfinite induction
(X) = (R) = 2 ⁵⁰ And how wany lines do we need to concer X?
Let 2 be a set of lines partitioning X. then 2 = 2's
Pick a point on each $l \in \mathbb{Z}$. This gives an injection $2 \longrightarrow \mathbb{R}^{*}$ of $ \mathcal{Z} \leq IR^{*} = 2^{sy_{0}}$. An injection $\mathbb{R}^{*} \longrightarrow \mathbb{Z}$? $\mathbb{R}^{*} \longrightarrow \mathbb{R}^{-\frac{1}{2}} = $
Let l'be any line in A arman is the Z.

To construct 2, we inductively construct a	a sequence sets of disjoint lines in X
$\mathcal{Z}_{i} \subseteq \mathcal{Z}_{i} $	
hoping that "in the limit " we cover all of	κ.
$\mathcal{Z}_{\mathcal{D}} \simeq \mathcal{O}$	$\int t_{0} x = R^{2} - \{0\}$
$\Sigma_{i} = \{l_{i}\}$	$P_{o} = R^{3} - \{0\}$
$\Sigma_{2} = \{l_{0}, l_{1}\}$	Well order the points of X
$Z_3 = \mathcal{G}_0, \mathcal{R}_1, \mathcal{R}_2$	$\begin{array}{ccc} as & g \\ a & g \\ c & $
	where A is well ordered. Actually we can take A = K
Inductively construct Z_{β} , $\beta \in A$, a set of hisjoint lines in X, such that	the smallest ordinal such that
· Zp covers Pa whenever << p.	$ \kappa = 2^{\aleph_0}$
• $ \mathcal{Z}_{p} \leq p < \kappa = 2^{\kappa_{o}}$.	· · · · · · · · · · · · · · · · · · ·
	Take $\Sigma = \bigcup \Sigma_{\beta \in A}$
• $\Sigma_{\beta} \subseteq Z_{\gamma}$ whenever $\beta \leq \gamma$	

Key Lemma: (inductive step) with $|\Sigma| < |\kappa| = 2^{\aleph_0}$ Given a set Σ of disjoint lines in Xwith PEX not covered by Σ (P $(P \notin U \Sigma)$, encon of lines there exists line l in X disjoint from all lines in Z passing through P. Consider a cone with vertex P. Every line of Z hits this cone in at most 2 points. There are 2⁴⁰ lives in This cone passing through P, at most |2| < 2⁵⁰ hit lives of Z. By the Pigeon Lole Principle, I exist. Store - Cech Compacti-fication Where are we headed? (Rough plan)
Product spaces. Tychonoff's Theorem.
Separation axions. Urysolin's Lemma.
Examples: Tychonoff's corkscrew, Tychonoff's Plank
Metrizatizaliility? · Uttrafitters

Given top, speces X, Y, we have the disjoint union X 11 Y which can be viewed as (X × 203) U (Y × 213) E(x,o): REX3 E(y, 1): yEY3	
eg. $\mathbb{R} \sqcup \mathbb{R} = \mathbb{R} \times \{0, 1\} \subset \mathbb{R}^2 \mathbb{R} \times \{1\} = \text{the line } y = 1$	· · ·
$\langle R \times \{o\} = r \cdot anis (g \cdot o)$	
WLOG I will assume X and Y are already disjoint (in order to avoid excessive notation of ordered pairs). Open gets in XHY are of the form UHV where USX is open and VSY open. In fact XHY is the coproduct of X and Y in the cotogory- theoretic sense. XHY enjoyer the following universal property: Given top. Spaces X and Y a coproduct of X and Y is a top. space X and two morphisms (continuous maps) to: X -> XHY, 4: Y -> XHY such that whenever Z is a top. space and f: X -> Z, g: Y -> Z (note: Bessened to be continuous), there exists a norphis fug: XHY -> Z such fing: q that this dicagreen commutes i.e. (fug) = see over $L_0(x) = (X_0), L_1(g) = (g, 1)$	-7

 $X \sqcup Y = (X \times \{0\}) \cup (Y \times \{1\})$ x - X - Y - Y $(fug)(x,o) = f(x) \in \mathbb{Z}$ $(f \cup g)(y, 1) = g(y) \in \mathbb{Z}$ Any XwY together with 10, 1, satisfying this universal property is a (the) coproduct of X and Y. It excists by our construction; and it is unique. If we also satisfies the same mineral property then X jo ji Y Jo why j. X Lo XWY L, Y X Jo W Ji (continos) Given top. speces X, Y, a product is a top. space XXY together with morphisms T: XXY - X, TT: : XXY ->Y such that for every top. space Z and morphisms f: Z-7X, g: Z-7Y, there exists h: Z-7XXY such that The following diagram Commutes: f 2 g X C XXY T, Y

	Existence of direct product: X:	$rY = \{(r, y) : r \in X,$	y∈ Υξ.
R Z g h T, Y X C XXY T, Y	Topology: UXV SXXY (USX are a basis for top. on XX	(, VSY open)	
$\pi_{\bullet} \colon (X, Y) \to X$	$\pi_i: X * Y \longrightarrow Y$		
$\pi_{o}: (X,Y) \to X$ $(x,y) \rightarrowtail x$	(x,y) - y		
Given f Z g	we have $h(z) = (f(z), g(z))$.		
X	· · · · · · · · · · · · · · · · · · ·		
The product to pe for which the t	bogy X × Y is the coarsest topole	gy on the Cattesian 15.	preduct
The product to pe for which the t We require To (U)	elogy X × Y is the coarsest topolo two projections To, TT, are continuous = U×Y to be orden in X×Y wherever	gy on the Cattesian is. UEX is open.	preduct Also
We require To(U)	= UXY to be open in XXY whenever	UEX is open. 1	product Also
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. VEY	product Also
We require $T_o(U)$	= UXY to be open in XXY whenever	UEX is open. VEY	product Also
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. VEY	product Also
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. VEY	product Also
We require $T_o(U)$	= UxY to be open in XxY whenever = XxV	UEX is open. VEY	product Also

Eg. R ² = R × R has topology generated by 7/1/1: 0 which is the standard topology.	(*V (U,VER).
A topological group is a group G endowed with such that the maps $G \rightarrow G$ is continuous $g \rightarrow g''$	a topology s
and GxG ~> G is also continuous. (g,h) ~> gh	
Eq. Consider $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x, y) = \begin{cases} \frac{2\pi y}{x^2 + y^2}, \\ \mathbb{R}^{\pi} \mathbb{R} \end{cases}$ The map $\mathbb{R} \to \mathbb{R}, x \mapsto f(x, b)$ is continuous for every	if $(x,q) \neq (0,0);$ if $(x,q) = (0,0).$ be R .
But f is not continuous $f'(1) = \{(x, x) \in \mathbb{R}^2 : x \neq 0\} = \frac{2xy}{x + y^2} = 1\}$ $= \{(x, x) \in \mathbb{R}^2 : x \neq 0\}$ is not closed in \mathbb{R}^2 .	$Q \in [R], \qquad y = x$ $2xy = x^{2} + y^{2} \qquad [$
$f(I) = \{(x,y) \in \mathbb{R} : \forall x,y\} = \frac{1}{x+y^2} = 1\}$ = $\{(x,x) \in \mathbb{R}^2 : x \neq 0\}$ is not closed in \mathbb{R}^2 .	$(x-y)^2 = 0$

(R, +) is a topological group.		• •
(\mathbb{R}^{*}, \times) · · · ·		•••
+ x are continuous maps R -> R.	· · · · · · · · · · · · · · · · · · ·	· ·
If f,g: R-R is continuous then so are One way to see this is	fig, fg.	• •
$(f * g) : \mathbb{R}^2 \longrightarrow \mathbb{R}^2$ $(x, y) \longmapsto (f(x), g(y))$ is continuous.		· · ·
$\mathbb{R} \longrightarrow \mathbb{R}^{2} \longrightarrow \mathbb{R}^{2} \longrightarrow \mathbb{R}$ $\mathfrak{x} \longmapsto (\mathfrak{x}, \pi) \longmapsto (\mathfrak{f}_{G}, \mathfrak{g}_{G}) \longmapsto \mathfrak{f}_{G}) + \mathfrak{g}_{G}).$	Similarly for multiplicatio	• •
diagonal enhedding of R in R ² .	· ·	· · ·
Given a top. space X. is the diagonal embedding dways continuous?		• •

	space (X, d) , $d: X \times X \longrightarrow [c]$ ms. of product spaces generalizes easily $x \times \cdots \times X$ as a special case.	j to $X_1 \times X_2 \times \cdots \times X_n$
Infinite products Intertion: TTX	are a little bit more subtle. (I some index set)	
Special case: _ 11	$R = R \times R \times R \times \dots = \{a_{0}, a_{r}\}$ Every function $\omega \longrightarrow R$	q_{2}, \cdots) : $q_{i} \in \mathbb{R}^{2}$
R ⁴³ ⁿ⁼⁰	Every function $\omega \longrightarrow \mathbb{R}$	
· · · · · · · · · · · · · · ·	$n \mapsto Q_n$	f∈ R ^R
RR = & function		

The product topology for $\mathbb{R}^{\mathbb{R}} = \{ \text{functions } \mathbb{R} \to \mathbb{R} \}$ is the coarsest topology for which the projections $f \mapsto f(a)$ (a \in \mathbb{R}) are continuous. This means we aquire : for every $\geq >0$, bet, $\{f \in \mathbb{R}^{\mathbb{R}} : f(a) \in \mathbb{B}_{2}(b)\}$ Bech) or any open set in R. is open in R. -) & RxRx ··· xR × U x R × ---, -(a),no restriction no restriction General product: Let X_x (xe A, some index set A) her top spaces. The <u>product space</u> TT X_x has the Cartesian product as its underlying set. As a set, an element x = (x a) deA & TT Xa is really a function A - VXx subject to Xx E Xx for all oce A. (Special case: all Xx isamorphic to X; X > Xx is a map A -> X= X). If $X_x \neq \emptyset$ for all a $\in A$, then $\prod X_x \neq \emptyset$. This uses AC = Axian of Choice

If all $X_{\alpha} = X$ for all $x \in A$ then $\prod X_{\alpha} = X^{A} = \S$ functions $A \to X \S \neq \emptyset$ assuming $X \neq \emptyset$. This holds in ZF without sequiving AC. Let $x \in X$ and consider the constant function $f(\alpha) = x$ for all $x \in A$. This gives the diagonal embedding X -> XA. Topology on Tt Xe: A sublassis consists of the open cylinders $\{x = (x_{\alpha})_{\alpha} : x_{\alpha} \in X_{\alpha} \text{ arbitrary for } \alpha \neq \beta; x_{\beta} \in U^{2}\}$ where $\beta \in A$, $U \subseteq X_{\beta}$ open = TTB'(U) where TTB: TTX -> XB $= U \times TT X_{\alpha}$ in coordinate & a=B x= (xx) orea > xB Under finite intersections, these generate a basis for the topology on the product space. Basic open sets have the form where k = 1 is a positive integer. {x ∈ (xa)reA x ∈ Ua; for i=1,..., k } $a_1, \cdots, a_k \in A_j$ Arbitrary open sets are milions of basic open sets. are open sets This is the product topology (or the Tychonoff topology).

If instead one takes as basic open sets It U, (U, S X, open) then one gets the box topology. det the Cartesian product This is a refinement of the product topology. Unless otherwise specified, the topology on IT X is understood fo be the product topology. Eg. RR = TTR = {functions R-R ? Each Emotion F: R-> R determines a point (F(x)) x E IR (a generalizel sequence). A basic open ubbd of f E R has the form U_i is an optiment of the form of the form R in R?. $2g \in \mathbb{R}^{\mathbb{R}}$: $g(x_i) \in \mathcal{U}_i$, i = 1, 2, ..., kor specifically i= (,..., k} $\left\{g \in \mathbb{R}^{K}: |g(x_{i}) - f(x_{i})\right\} < \varepsilon_{i}$ Varying X1,..., Xk, k, Z1,..., Ek we get a basis for the topology of IR in this way.

A converget sequence of functions in $\mathbb{R}^{\mathbb{R}}$: $f_n(x) = \begin{cases} 0, & \text{if } |x| < n \\ n, & \text{if } |x| \ge n. \end{cases}$ In -> 0 i.e. for any besic open nord of O, for ell n>0. 2000 function In usual language, $f_n \rightarrow 0$ pointwice meaning for all $x \in \mathbb{R}$, $f_n(x) \rightarrow 0$. $\omega = \{0, 1, 2, 3, \dots\}$ In the box topology, for /> 0. Take X = R × R × R × R × m = {(q, q, q, q, q, m) : q; e R} = R as a set (Cartesian product). Compare product topology, box topology, and topologies from a few norms including |(x/100 = sup [q;]. $\| x \|_{1} = \sum_{i=1}^{n} |a_{i}| = |a_{0}| + |a_{1}| + |a_{2}| + \cdots$ $\| x \|_{2} = (\sum |a_{1}|^{2})^{Y_{2}}$

 $\mathcal{L}' = \{ x \in \mathbb{R}^{\omega} : \|x\|_{2} < \infty \}$ $\mathcal{L}' = \{ x \in \mathbb{R}^{\omega} : \|x\|_{2} < \infty \}$ $\mathcal{L}^{\sim} = \{x \in \mathbb{R}^{\sim} : \|x\|_{\infty} < \infty\}$ $\mathbf{x}_{i} = -\left(\left(\mathbf{1}_{i} \mid \mathbf{I}_{i} \mid \mathbf{$ $\chi_{2} = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \cdots\right)$ メラー (ちちちち ち ・・・) $x_{-} = \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \begin{array}{c} \pm \\ - \end{array} \left(\begin{array}{c} \pm \\ - \end{array} \right) \left(\begin{array}{c} \pm \end{array} \right) \left(\begin{array}{c} \pm \\ - \end{array} \right) \left(\begin{array}{c} \pm \end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array} \right) \left(\begin{array}{c} \end{array} \right) \left(\end{array} \right) \left(\end{array} \right)$ n -> 0 = (0,0,0,...) in the product topology but not in the box topology In the uniform norm topology, Xn->0 (Xn-70 in l). In the box topology, $\Pi(-\frac{1}{n+1}, \frac{1}{n+1})$ is a basic open nord of O and it contains no toms of the sequence (Xn) ... en

Now consider $y_1 = (1, 0, 0, 0, 0, ...)$ Nyn11,= 2 <∞ $\|y_n\|_2 = \frac{1}{16} < \infty$ yz= (±, ±, 0, 0, 0, ...) y3 = (\$, \$, \$, 9,0,...) etc. $\|y_{\alpha}\|_{\infty} = \frac{1}{n} < \infty$ $y_n = (\frac{1}{n}, \frac{1}{n}, \frac{1}{n}, \frac{1}{n}, 0, 0, \cdots) \longrightarrow 0$ in $l_i^2 d_i^{\infty}$ product topology heat not in the box topology. The box topology has $TT(-\frac{1}{2^{n+1}},\frac{1}{2^{n+1}})$ as a basic open which of 0 and it contains no term of the sequence of points $(y_n)_n$. The product topology is sometimes called the topology of pointwise convergence. The box topology is not usually as useful the other topologies.

A sequence fin in R^A converges uniformly to f if for all E>O there exists N such that $|f_n(a) - f(a)| < 2$ whenever n > NBasic open sets in the topology look like UA = TtU, USR is open. (finer than the product topology but coarser than the box toplogy). If IAI<00 then the product topology on TIX. agrees with the box topology. If IA(= 18) then products IT X, and TIY are essentially the same. etter the definition of the product or box topology.) IR ~ R R in the product topology

(as a topological space) The Cantor Space K, = [0,1] $K_{2} = [0, \frac{1}{3}] \cup [\frac{2}{3}, 1]$ Kg= (の行いに、台) い (音, 音) い (音, 1) etc. C= NKn is a compact top. space. CCR and we take the standard topology. It is a metric space. If is totally disconnected: given $x \neq y$ in C, there exists a partition C=ULIV, U,VCC open, $x \in U$, $y \in V$. Equivalently, C = 10,13^w = 2^w with the product topology. (30,13 is listing Points of C have the form (a, 9, 9, 9, ...) where 9; E Eq. 13. $|C| = |R| = 2^{\aleph_0}$

A set of basic open noblds of $a=(a_0, a_1, a_2, a_3,) \in ($ is	the	set	of a	
$\{b \in C: b_i = a_i, for i \leq n \}$.	· · ·	· · · · ·		
A metric defining this topology is	· · ·	· · · · ·		
A metric defining this topology is $d(a, b) = \begin{cases} 0, & \text{if } a = b \end{cases}$ $d(a, b) = \begin{cases} 1, & \text{if } a \neq b, & \text{for some } and & \text{we take the } \\ \frac{1}{2^n}, & \text{if } a \neq b, & \text{for some } and & \text{we take the } \end{cases}$	 	 	· · · · · ·	
	· · ·	· · · · ·		
A homeomorphism = {a e Q: a _2 < 1 }.	· · ·	· · · · ·		
This is really $\mathbb{Z}_2 = 2 \cdot aarc aceques$ $= \{a \in \mathbb{Q} : \ a\ _2 \leq 1\}$. A homeomorphism $\{0, 1\}^{\mathbb{N}} \longrightarrow U_{Suel} Cantor set \bigwedge K_n is$ $(q_1, q_2, q_1, \dots) \longrightarrow \overset{2}{\geq} \frac{2q_n}{2}$	· · ·	· · · · ·	· · · ·	· ·
n = 13	· · ·	· · · · ·		
The Cantor Space is the migue compact Hausdorst space with which is second comptable having a comptable base of clopen se	ont ets.	zolati	d point	5
The Cantor Space is the migue compact Hausdorsf space with which is second compact having a compact below base of clopen se Second compable: having a compable base. Separable: having Second compable: having a compable base. Separable: having AGX is dense	if A	countable ∩U≠ my open	dense Ø for U=Ø.	2

Tychonoll's Theorem A product of	compact spaces is compact.
That is, if K_{α} ($\kappa \in A$) is an indexed	family of compact spaces, then
TT Ka is compact. (NB: U/e a NB:	are using the product topology here.) means "take note"
eg. [0,1] is compact in the product	topology.
Not in the box topology eq. for en	$e_{xy} \ a \in \{0, 1\}^{\omega} \ i.e. \ 4^{\perp} (a_0, q_1, q_2,) \ q_1 \in [p_1, 1]$
$\mathcal{U}_{a} = (\mathcal{U}_{a(i)})$	$U_0 = [0, \frac{2}{3}), U_1 = (\frac{1}{3}, 1]$ open in $[0, 1]$
including $U_{(q;q;1,q),qq)} = U_{x}U_{x}U_{x}U_{x}$ Covers $[o_{i}:]^{\omega}$. No finite number of t	$U_1 \times \cdots$ lease U_6 's cover $[0,1]^{\omega}$
X is Hausdorff if for all x=y in X	, there are disjoint open woulds of randy.
X is regular if for every closed	, there are disjoint open woulds of x and y. x y x y $x \in U, K \leq V.$ x u k
are open sets U, V with UNV=0	$r, \pi \in \mathcal{U}, K \subseteq V.$ $(\pi^{\bullet})([K])$
X is normal if (D)(D)	u v

Warning normal spaces are not necessarily regular (unless points are closed) f_{g} , $\chi = \{0,1\}$ This space is normal. It's not regular. Open sets: Ø, So? X Chosed sets: Ø, SI? X. 0 1 $\frac{(lrysoluis)}{disjoint} \frac{leme}{closed} sets, K,L, there exists a continuous function <math>X \rightarrow [0,1]$ such that f(x) = 0 for all $x \in K$, f(x) = 1 for all $x \in L$. Metric spaces are Hansdorff, normal and equilar. In any metric space (X, d), d: X × X → [0,00) is continuous. If $A \subseteq X$, we can define distance from $x \in X$ to A: $d(x, A) = \inf d(x, q)$. This is a continuous map $X \rightarrow [0,\infty)$. d(x,A)=0 iff $x \in \overline{A} = closeve$ d(A,B) = iof d(a,B). If A,B are disjoint dosed sets then d(A,B) > 0. $g \in A$ $f(x) = \frac{d(x,A)}{d(x,A) + d(x,B)}$

Wed Oct 19 } prerecorded lectures on Baire Category - see website (Lecture Fri Oct 21 } videos + pers) Lemma X is normal iff whenever K CV with K closed and Vopen, $(\overline{U} = closure of U = smallest closed set containing U).$ X-V= {rex: rev} Proof K U Ü closed Proof of Noysohn's lamma (\Leftarrow) Suppose K, L disjoint closed sets in a space X and $f: X \rightarrow [0,1]$ is continuous with $f|_{k=0}^{=0}$, $f|_{L=1}^{=1}$. Let $U = f([0, \frac{1}{3})) \subseteq X$ is open. $V = f((\frac{3}{3}, 1)) \subseteq X$ is open. UNV=Ø, KSU, LEV. So X is normal.

<u>Ury solur's Lerme</u> X is a normal top space iff for every pair of disjoint closed sets K(L) there exists a continuous function $X \rightarrow [0,1]$ such that f(x) = 0 for all $r \in K$, |f(x) = 1 for all $x \in L$. Urysolu's Lema We recursively use the Lamma Proof (>) to find an indexed collection of open sets la shere a is any dyadic rationalin [0,1] (kyadic rationals have the form $\frac{m}{2^{k}}$, m, k $\in \mathbb{Z}$) Such that $U_a \subseteq U_a \subseteq U_1$ whenever $0 \leq q < b \leq 1$ U. U. U. U. KSUA UA OL=Ø for relaid, $f(r) = inf \{r \in [0, i] : r \in U_r\}, \ F = U_3$

Question: It & is regular, i.e. K x∉K nuist there exist a continuous fonction $f: X \rightarrow [0, 1]$ such that f(x)=0, $f|_{K}=1$? No! There is no analogue of Urysolin's Lemme for regularity. X is completely regular if whenever : [K] K closed, r&K, there exist continuous f: X-7 [0,1], f(x)=0, f/x=1. Tere exist top. spaces which are regular but not completely equilar (eg. Tychonoff corkstrew) but we will omit this. X is completely normal if every subspace of X 3 normal. Remarks: If X is completely regular then X is regular (easy) and every subspace of X is also completely regular. In X: X ANKA There exist continuous f: X -> [0,1] such that f(x)=0, f|_{K}=1. Restricting f 70 fl, we see that A is also completely regular.

Is every subspace of a normal space normal? No: see Tychnoff's Plank. K) ANK ANS .