Point Set Topology

Book 3

· If AEJ and ASBCK, then BEJ. · If A, A'E'S then A \ A' & S. Every intraditter is a filter, but not conversely. A collection of subsets of X has the finite intersection property (fip.) if for all A, ..., A, ES, A, A, A, A, A, -.. A, + Ø. A litter has the Pip. If S is any collection of subsets of X having Pip. then S generates a fitter: F = { supersets of finite intersections of sets in S} = {BCX: A, nA, n. nA, EB for some A, A, ..., A, ES}. This is the (anique) smallest collection of enbests of X which contains S and is a fitter. If J. J' are fitters on X, we say F' refines F if J G J'.
The ablection of all fitters on X is partially ordered by refinement. Given a filter of on X, the collection of filters refining of las a maximal member by Forn's Lemma. This is guaranteed to be an uttrafilter. Assume we are given a non-principal suffrafilter $\ell \ell$ on $\omega = \{0,1,2,3,...3\}$. Construction of the nonstandard real numbers (hyperreals) *R or R. IR and IR are examples of ordered fields. IR and IR are very similar from first appearances. eg. If $f(x) \in R[x]$ or iR[x] (polynomial in x) of degree 3 that I has a root (in R or iR respectively). If f'>0 then this root is unique. Positive dements have a unique square root.

A fitter on X is a collection Fr consisting of subsets of X such that

· Ø&J, X&J

But: R is an Archimedean field: it has no infinite or infinitesmal elements. More precisely, if $a \in \mathbb{R}$ satisfies $0 \le a < \frac{1}{n}$ for all n = 1, 2, 3, 4, ... then a = 0. $\widehat{\mathbb{R}}$ has infinitesized elements (it is Non-Archimedian field). Construction: Start with R = { (a, a, a, a, ...): a: ER } (all sequences of real numbers). Given a, b & R we can add/audtiply/subtract pointwise 4+6 = (4+6, 4,+6, a2+62, ...) ab = (a, bo, a, b, a, b, ...) It's not a field; it has sens divisors eg making Ra into a ring with identity 1 = (1,1,1,1,...) (1,0,1,0,1,0,...)(0,1,0,1,0,1,...) = (0,0,0,0,0,0,...) = 0 & 12" But take an uttrafiller el on w (el nonprincipal). If a:= b: for all ie U \ U then a: ~ b: (equivalence mod U). In this case (0,1,0,1,0,1, ...) ~ (1,1,1,1,1,1,...) = 1 $= ((i_10, i_10, i_10, ...)) \sim (0, 0, 0, 0, 0, 0, 0, 0) = 0.$ Given a, b \ R \ \ (in which case a ~ b) or w-A \ U (in which case a ~ b) or w-A \ U (in which Case a+b). $\hat{\mathbb{R}} = \mathbb{R}^{\omega}/_{\omega} = \{[a]_{\omega} : a \in \mathbb{R}^{\omega}\}, [a]_{\omega} = \text{equir. class of } a = \{x \in \mathbb{R}^{\omega} : x \sim a\}.$ IR is a field. If a to then actually a to ([a] + [o],) so fiew: 4: + of & U. (most coordinates of a ere nonzero). Then $\frac{1}{a} = (\frac{1}{a} : i \in \omega)$ Anywhere that a:=0, ignore or replace by 1

$$W = \left\{i \in \omega : q \ge b;\right\} \coprod \left\{i \in \omega : q \ge b;\right\} \coprod \left\{i \in \omega : b \le q;\right\}$$

$$Exactly one of these three sets is an ultrafitter set. Correspondingly, $q \ge b$ or $a \ge b$ or $b \ge q$.

$$R \subset R \subset R^{\omega}$$

$$Given a \subseteq R, identify with $(a, q, q, q, \dots) \in R^{\omega}$. This way R is embedded in R^{ω} .

The topology on R is the order topology: basic open sets are open intervals (a_1b) , $q_1b \in R$.

$$Eq. \ z = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is an infinitesimal.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinitesimal.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.

$$\frac{1}{2} = \left[(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)\right]_{R} \in R^{\omega}$$
 is infinite.$$$$

IR is an ordered field. Given a, b \(\overline{R}, \) either a < b or a = b or b < a.

Every hyperreal is either infinite (at \hat{R} , |a| > a for every positive integer of or it's bounded in which case a heat a unique standard part $st(a) \in \mathbb{R}$ (the closest real number to a). To compute f'(x) where $f(x) = x^2 + 3x + 7$ using nonstandard analysis, let $a \in \mathbb{R}$, and we want to compute $f'(a) \in \mathbb{R}$. Pick $\hat{a} \in \hat{\mathbb{R}}$, $st(\hat{a}) = a$, $\hat{a} - a = 8$ is an infiniteeral. $f(\hat{a}) - f(a) = f(a \cdot \epsilon) - f(a) = (a \cdot \epsilon)^2 + 3(a + \epsilon) + 7 - (a^2 + 3a + 7) = 28a + 8^2 e^{-13a\epsilon}$ $f(a+\epsilon) - f(a) = 2a + 3 + \epsilon$, f(2a+3) = 2a = f(a).

Warm-up to the proof of Tychonoff's Theorem. Let S be a collection of subsets of X. S has the finite intersection property (f.i.p.) if every finite intersection of sets in S is nonempty i.e. S1, S2, -, S1 € \$ => \$1.52.0 ... 18, +0. (Recall: if S has f.i.p. then supersets of finite intersections of sets in Lemma 1.1 Let X be a top. space. Then the following are equivalent. (i) X is compact. (Every open cover of X has a finite subcover.) via complematation (use de Morgaislans) (ii) It S is any collection of closed sets with fip. then (15 # 0. Proof: exercise. fitter such that for every ASX, either AEU or K-AEU, (A nobble is a superset of an open nobble.) An afratilter U on X converges to a point $x \in X$ if every while of x is in U. We write $U \ni x$ in this case. (Recell: The ublds of x form a filter.) Much topology is readily formulated in the language of ultrafilters e.g. · X is Hausdorff iff every ultrafiller converges to at most one point.

N is compact iff every ultrafiller converges to at least one point.

A function f: X -> Y is continuous iff it maps convergent ultrafillers to convergent ultrafillers.

Theorem 2.16) let X be a top space. Then X is Housdorff it every ultrafille on X converges to at most one point of X. Proof (=>) Suppose X is Housdorff. Suppose U is an ultrafilter on X converging to two different points X = y in X. There exist U, V \(\times \) disjoint open sets with x \(\tilde{U} \), \(\tilde{U} \). \(\tilde{U} \)

Since Usx UEU. Similarly VEU. Then UNV = DEU, contradiction. (=) Suppose every ulfrafither on X converges to at most one point of X.

(=) Suppose every afrafitter on X converges to at most one point of X. Let x +cy in X.

By way of contradiction, suppose that UNV + Ø for every open while W of x and every open while V of y. Then Expension of r? U sopen solds of y? has fing.
This generates a fitter which in turn retires to an uttrafille U. UNT, UNY, a constadiction. So X must be transdorf. theorem 2.106) Let X be a top space. Then X is compact it every ultrafilter on X converges to at least one point of X. Froof (\Rightarrow) Suppose X is compact. Let U be an ultrafilter on X. Suppose U does not converge to any point of X. So for each $x \in X$, there exists an open while U_x of x such that $U_x \notin U$. So $\{U_x : x \in X^{\frac{3}{2}} \mid x \in X$ X = Ux U Ux UUx U -- U Ux for some n>1; X1, ..., x= X. So Ux: E U for some i Contradiction. (=) Suppose every uttrafitter on X converges to at least one point of X. We want show that X is compact. Let S be a collection of closed subsets of X with f.i.p.; we must show ()S=0. Now S generates a fitter which refines to an ultra Citter U2S. By assumption, U5x For some point $x \in X$. We will show $x \in \Lambda S$. If not, then there exists $K \in S$ such that $x \notin K$. Then X-K is an open nobled of x. So X-K $\in \mathcal{U}$. But also $K \in S \subseteq \mathcal{U}$. Contradiction.

Ultrafilters gives the following characterization of open sets. theorem 22 Let X be a top, space, and let USX. The following are equivalent: Lis U is open ... (ii) Whenever an attratites converges to a point $x \in U$, we have $U \in \mathcal{U}$. Proof (=) Trivial. Suppose U is open. Suppose also U ic an utfratiller converging to a point xXU. Then UNXEU SO UEU. (=) Suppose (ii) holds. We must prove U is open. If not, then there is some x ∈ U such that every open while of x meets X U (i.e. has points outside U). The collection Eopen whiles of x } U { X-U} has f.i.p. If generates a fitter which refines to an uttrafitter U > x \in U. By cin, U \in U. Also X-UE U, contradiction. Let $f: X \rightarrow Y$. Given an ultrafitter Y on X, f pushes U forward to an ultrafilter f, U on Y. This works just like for measures. If μ was a measure on X then for each measurable subset $A \subseteq X$, $\mu(A) \in [0,\infty]$. We'll be interested in probability measures so $\mu(A) \in [0,1]$, $\mu(D)=0$, $\mu(X)=1$, $\mu(A \sqcup B)=\mu(A)+\mu(B)$. "Measure" usually require comtable additivity (stronger than finite additivity) so when it's only finitely additive we call μ a finitely additive measure. Ultrafilters can be viewed as finitely additive measures. But $\mu(A)=\S^{-1}$ if $A \in \S^{-1}$. Ultrafilters can be viewed as finitely additive measures. But $\mu(A)=\S^{-1}$ if $A \in \S^{-1}$. In general, measures on X give rice to measures on Y: for every B = Y, M(B) = M(f'(B)), Check: Mx is a measure on Y; it's the push-forward of u via f.

Special case: Let f: X -> Y, U uttra titler on X. Then the pushforward of U via f 5 f 21 = { V C Y: f'(Y) E 21 }. Check: this is an afterfilter on Y.
Therem 3.2 Let X and Y be top. spaces and let f: X > Y. Then the following are (i) + is continuous (ii) of maps convergent utrafiltas to convergent utrafitters; more precisely if U & T EX (9 uttrafilte in X) then f(U) > f(G) ∈ Y. Proof (\Rightarrow) Suppose f is continuous, and let Q be an ultra-little on X such that $Q y x \in X$. We must show that f, Q y $f(x) \in Y$. Given an open ubbd V of f(x) in Y, we must show that $V \in f$, Q, i.e. show $f(V) \in Q$. Since f is continuous, f'(V) is an open ubbd $f(V) \in Q$. while of x, so $f(Y) \in \mathcal{U}$. (\Leftarrow) Suppose (ii). We must show f is continuous. Let $V \subseteq Y$ be open; we must show that f(V) is open in X. Let $x \in f(V)$ and U be an ultra-filter converging to x: U y x ∈ f(v). By assumption (ii), f(U) & f(x) ∈ V. Since V is an open whole of f(x) in V, Vef(U) i.e. f(V) ∈ U. By Thum 22, f(V) is open. [] Theorem 42 Let I be an ultrafilter on X= TTX, and let x= (x=)x & X. Then U & r iff (Ta), U > Ta ∈ Xa for all or. (Tx: X → Xx). Proof (3) Suppose U & x = (xa), EX. Since To is continuous, (Ta), U & xa by Theorem 3.2.

Theorem 4.2 Let Il be an ultravitter on X= TTX. and let x= (x) E X. Then U & r iff (T_a)₄U > T_a ∈ X_a for all or. (T_a: X → X_a). Proof (=) Suppose (π_{α}), \mathcal{U} $\vee \chi_{\alpha} \in \chi_{\alpha}$ for all α and let $\chi : (\chi_{\alpha})_{\alpha} \in \chi$. We must show $\mathcal{U} \times \chi$. Given an arbitrary open while \mathcal{U} of χ in χ , we must show $\mathcal{U} \in \mathcal{U}$. Without loss of generality, U is a sublessic open set of the form $U = \pi_{\alpha}(\mathcal{U}_{\alpha}) = (\prod_{\beta \neq \alpha} \chi_{\beta}) \times \mathcal{U}_{\alpha}.$ (some α) This follows for Thom 3.2 because To is continuous. Theorem 5.1 (Tychonoff) If each Xx is compact then so is X= TIXx. Proof Let Xa be compact. Let I be any uttrafilter on X= TIXx; we must show that U converges to at least one point of X. But $(\pi_{k})_{*}U \supset x_{n} \in X_{n}$ for some point x_{n} since X_{n} is compact. Let $x = (x_{n})_{n}$ and show $U \vee x$. This follows from Theorem 4.2. \square Typical application:

let V be a normed vector space e.g. ([0,1]) or loo= { bounded sequences as R 3, ie. II | V -> R satisfies (i) ||v||>0, and equality holds iff v=0; (a) ||v+w|| \le ||v|| + ||w|| (in) || cv || = |c| ||v|| for all c+ R, v e V. d(v, w) = 1/v-w/r. A bounded linear functional on V is a map f: V -> IR such that · f(au+bv) = af(u)+bf(v) for all qbeR; y,veR · there exists (ER such that 1f(v)) & C ||v|| for all v \in V. $V^* = \{ \text{ bounded linear functionals on } V \} \text{ is a normed vector space (but larger than } V) }$ For $f \in V^*$, $\|f\| = \sup\{|f(v)| : v \in B\}$, $B = \min\{ball i : V = \{v \in V : \|v\| \le 1\}$. $d(f,g) = \|f-g\|$. $B^* = \{f \in V^* : \|f\| \le 1\} = \{f \in V^* : (f(v)) \le \|v\| \text{ for } v \in V\}$. We can regard $B^* \subseteq [-1, 1]^B = \{f_m \in S^B \to [-1, 1]\} \ (B^* \text{ consists of all functions } B \to [-1, 1]\}$ which extend to a linear function on V). $B^* := \{f \in V^* : \|f\| \le 1\} = \{f_m \in S^B \to [-1, 1]\} \ (B^* \text{ consists of all functions } B \to [-1, 1]\}$ which extend to a linear function on V). $B^* := \{f \in V^* : \|f\| \le 1\} = \{f_m \in S^B \to [-1, 1]\} \ (B^* \text{ consists of all functions } B \to [-1, 1]\}$ Fig. V=loo, $B=\frac{2}{3}(a_0,a_1,a_2,...):4:ER, |a_1|\leq 1$ is covered by open halfs of radices $\frac{1}{2}$ but no finite number of these cover B. The point set $\{(\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2},\pm \frac{1}{2},\cdots)\}\subset B$

The product topology in [-1,1] is really the topology of "pointwise convergence" which is weaker than the norm topology ie, if f, f, f, f, ... + V* then saying for in the norm to polegy (If - fil - o as n >00) is a much stronger statement than saying I -st pointwise (for all veV, fu(V)-> f(V) as n -> 0) which is weaker. In this topology, B* is embedded as a closed (topological) subspace of [-1,1]B, hence B* is compact. Given a top. space X, we would like to embed X in a "nice" space that we think we understand. An embedding of X in Y is an injection $v: X \to Y$ such that the image $v(X) \subseteq Y$ is homeomorphic to X via v(X) = v(XEg. a completion of a metric space (X, d) is an embedding of (X,d) lin a complete metric space (Y, d'). If moreover ι preserves distances i.e. $d'(\iota(x), \iota(x')) = d(x, x')$ for all x,x' ∈ X) then i is an isometric embedding. (Y,d') is complete when that Canchy sequences converge i.e. if $(g_n)_n$ is a Canchy sequence in Y (for all $\varepsilon > 0$ there exists N such that $d'(g_m, g_m) < \varepsilon$ whenever m, n > N) then there exists $y \in Y$ such that $y_n \to y$ (i.e. $d(y_n, y) \to 0$). Eq. (Q, usual distance) is a metric space which is not complete. If can be embedded in a complete metric space; there are money ways to do this. eg. $Q \to C$

We regard Q - R as 'the' completion of Q: it is unique up to equivalence. We'll use: If f: X -> Y is a continuous map, and if Y is Hausdorff, then f is determined by its values on a dense subset of X. (SEX is bluse if every nonempty open subset of X meets S). This says: if f,g: X->Y are continuous and they agree on a dense subset SCX, then f= a. Proof Suppose $f \neq g$, i.e. there exists $x \in X$ such that $f(x) \neq g(x)$ in Y. Then

Then

The such that $f(x) \neq g(x)$ in Y. Then

The such that $f(x) \neq g(x)$ in Y. Then

The such that $f(x) \neq g(x)$ in Y. Then (f(x)) (g(x)) Then f(u), g'(v) are open whiles of $\pi \in X$. So there exists $s \in S \cap f(u) \cap g'(v)$, so $f(s) = g(s) \in U \cap V$, contradiction.