

| Let X be a set. A topology on X is a collection J of subsets of X<br>(called the open sets) such that                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (i) Ø, X e J<br>(ii) J is closed under finite intersection and arbitrary union, i.e.                                                                                                                                                                                                                                                                     |
| and a second sife a U,V e of Santhen a Un VE Ja; a second second second second second second second second second                                                                                                                                                                                                                                        |
| if $\mathcal{U} \subseteq \mathcal{J}$ then $\mathcal{U} \mathcal{U} \in \mathcal{J}$ .<br>(So for $\mathcal{U}, \mathcal{V} \in \mathcal{J}$ , $\mathcal{U} \cup \mathcal{V} \in \mathcal{J}$ . If $\{\mathcal{U}_{\alpha} : \alpha \in \mathbb{I}\}$ is an indexed collection of open sets, then $\mathcal{U} \mathcal{U}_{\alpha} \in \mathcal{J}$ .) |
| Example (standard open set)<br>The standard topology on IR": K= R". A set U < IR" is open if<br>Sor all ue U, there exists E>O such that                                                                                                                                                                                                                 |
| $(\mathbf{w}) = \{\mathbf{x} \in \mathbb{R}^{n}: d(\mathbf{x}, u) < \varepsilon\}.$ Here $\mathbf{B}_{\varepsilon}(u) = \{\mathbf{x} \in \mathbb{R}^{n}: d(\mathbf{x}, u) < \varepsilon\}.$                                                                                                                                                              |
| In other words, a standard<br>open set in $\mathbb{R}^n$ is a union (the open E-bell centered at n).<br>of open balls.                                                                                                                                                                                                                                   |

Eq. (More gaverally) Let X be any set and let S be a collection of subsets of X which over X, i.e. US = X. Then the oblection of all unions of finite intersections SinSzn. NSk , Sun, Sk & is a topology on X. The members of S are called a sub-basis for this topology and the topology is said to be generated by S. S is called a base (or a basis) for the topology if the topology is the collection of arbitrary unions of elements of S. This holds it? for all  $S_{i}, S_{i} \in S_{i}$ S, Sz and all u & S. A.S. there exists SzES such that ue Sz SINSZ. Eq. let X be any set. The discrete topology on X is the collection of all subsets of X. (2\*) The indiscrete topology on X is \$0, x3. If  $X = \{0, 1\}$  then there are four possible topologies on  $X: \{0, X\}, \{0, 10\}, \{1\}, X\}, \{0, 10\}, X\}, \{0, 10\}, X\}.$ 

|                                                                                                                                                                                                             | of confloments of finite sets, and Ø                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                                                                                                                                                                             | A= {xeX : x & A}.<br>et difference                                  |
| This is a topology on X, called the<br>finite complement topology.                                                                                                                                          | X-A, X-A, X\A                                                       |
| A <u>topological space</u> is a pair (X, J) where<br>T is a topological space                                                                                                                               | Ø, Ø, Ø, O                                                          |
| J is a topology on a set $X$ .<br>Note: $UJ = X$ . By abuse of language, we obtain                                                                                                                          | n say that X is a topological                                       |
| space.<br>Let X be a set. A distance function (or netric)                                                                                                                                                   | , on X is a function                                                |
| Let $\chi$ be a set. A distance function (or nettric)<br>$d: \chi * \chi \rightarrow [0, \infty]$ such that for all $x, y, z$<br>d(x, y) = d(y, x)                                                          | e∈ X,                                                               |
| $d(x,y) \ge 0$ and equality bolds iff $x = y$ .<br>$d(x,z) \le d(x,y) + d(y,z)$                                                                                                                             |                                                                     |
| The standard topology on R" is a matric topology.                                                                                                                                                           |                                                                     |
| The metric $d_2(x_{rg}) = \sqrt{(x_r - y_i)^2 + \dots + (x_n - y_n)^2}$ (the End<br>$d_1(x_{rg}) =  x_i - y_i  + \dots +  x_n - y_n $<br>$d_{\infty}(x_{rg}) = \max \{ S(x_r - y_i), \dots,  x_n - y_n  \}$ | dlean wetric)<br>all give the standard topology on R <sup>n</sup> . |

In R?, open halls with aspect to dr. A., do look like These three motorics, define the same topology. Mitty Marine Mar The metric  $d(x,y) = \begin{cases} 0, & \text{if } x = y \\ 1, & \text{if } x \neq y \end{cases}$  defines the discrete topology. A topological space is metricable if its topology can be given by some matric. (not uniquely however) If X is an infinite set, then its finite condemnate topology is not watricable. A topology is Hausdorff if for any two points  $x \neq y$ , there exist open sets U, V such that  $x \in U$ ,  $y \in V$ ,  $(\cdot, \cdot) = (\cdot, \cdot)$   $U \cap V = \emptyset$ . Every metric space is Hausdorff since if  $x \neq y$ , d = d(x,y) > 0. Take  $U = B_{S_{1}}(x)$ ,  $V = B_{S_{1}}(y)$ 

| An open neighbourhood of a point x ∈ X is an open set containing x.                                                                                                                                                                                                                                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| An open neighbourhood of a point $x \in X$ is an open set containing $x$ .<br>Nobbed<br>A basic open mobiled of a point $x \in X$ is an open nobbel of $x$ which is basic (i.e. it's<br>in the basis).<br>Even metric space can be rother surprising.                                                                                                                                                         |
| $\Lambda$ Consider $X = Q$ . A norm on Q is a function $Q \rightarrow [0,\infty)$ ,                                                                                                                                                                                                                                                                                                                           |
| $x \mapsto   x    \text{satisfying}$ (i) $  x   \neq 0$ ; equalify holds iff $x=0$ . (ii) $  x   =   x   \cdot   y  $ .                                                                                                                                                                                                                                                                                       |
| $(\ddot{u})   x + y   \le   x   +   y  .$                                                                                                                                                                                                                                                                                                                                                                     |
| trom any norm on W, we obtain a metric $d(x,y) =   x-y  $ .<br>One way to do this is with the unal absolute value $  x   =  x   =  x  _{\infty} = \begin{cases} x & , if x > 0; \\ -x, & if x < 0. \end{cases}$<br>This gives the standard to pology on Q.                                                                                                                                                    |
| An atternative is: given $x \in \mathbb{O}$ , if $x=0$ define $  0  _2 = 0$ .<br>If $x \neq 0$ , write $x = 2^{k} \frac{a}{b}$ , $a, b, k \in \mathbb{Z}$ , $b \neq 0$ ; $a, b \neq dd$ . Then define $  x  _2 = 2^{k}$ .<br>This is the 2-adic norm on $\mathbb{R}$ . In fact it satisfies a stronger form of (iii), the<br>ultrametric inequality $  x+y   \leq \max \{  x  ,   y  \} \leq   x   +   y  $ . |
|                                                                                                                                                                                                                                                                                                                                                                                                               |

| $\Sigma.g. \ \widetilde{\widetilde{a}} + \widetilde{f}_{4}\ _{2} =$                                                                   | $\left\ \frac{40+15}{42}\right\ _{2} = \left\ \frac{55}{42}\right\ _{2} = 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $= \max \{ \  \frac{1}{2i} \ _{2} \}$                                          | $\left(\begin{array}{c} 5\\ 1\\ 1\\ 1\\ 1\end{array}\right) = 2$ |                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|------------------------------------------------------------------|--------------------------------------------------|
| $\left\ \frac{20}{2!}\right\ _{2}^{2} = \frac{1}{4}$                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $pare: \ \frac{20}{24}\ _{2}^{\frac{1}{4}} \ \frac{5}{14}\ _{2}^{\frac{1}{4}}$ | ~ 24 =                                                           | 225.                                             |
| A basic open nobled of<br>$B_{\varepsilon}(0) = \{x \in \mathbb{Q} \mid x \in \mathbb{Q} \mid x \in \mathbb{Q} : x \in \mathbb{Q} \}$ | $f = 2000 \ looks \ like$<br>: $\ x\ _{2} < \varepsilon \ $<br>$\ x\ _{2} < 1 \ $<br>= $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $ $\ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (e7 a ever )                                                                   | dd 3                                                             | · · · · · · · · · · · ·                          |
|                                                                                                                                       | hall is a centre of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ball ie. if ce                                                                 | B, (0) then                                                      | B <sub>1</sub> (c) = B <sub>1</sub> (o).<br>Some |
| an a                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                  |                                                  |
| $d(x,z) = \ x-z\ _{2}$                                                                                                                | Then two of the side<br>length, i.e. the -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | riangle is isoscelle                                                           | •••                                                              |                                                  |
| $d(x,z) \qquad ( y-z  _{z}) =   x-z  _{z}$                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                |                                                                  |                                                  |
| $d(x,z) = \ x-z\ _{2}$                                                                                                                | length, i.e. the $\frac{1}{2}$ |                                                                                |                                                                  |                                                  |

1+2+4+8+16+32+64+--- = -1 The partial suns 1, 3, 7, 15, 31, 63, ... converge to -1 in the 2-adic norm. Note: If  $(x_n)_n$  is a sequence of points in a top. pace X, we say  $(x_n)_n$ <u>converges</u> to  $x \in X$  if for every open noted U of  $\pi$ ,  $x_n \in U$  for all a sufficient large. (This means: for all U open noted)  $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$   $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$   $(x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \cdot x_n \in U$   $(x_n \cdot x_n \in U$   $(x_n \cdot x_n \in U$   $(x_n \cdot x_n \cdot x$ In place of arbitrary open ublds of x, it suffices to check basic open ublds. For metric topology, it suffices to check open balls. In this case,  $\pi_n \rightarrow \chi$  provided that for all  $\epsilon > 0$ , there exists N such that i.e.  $d(x_n, x) < \varepsilon$  whenever n > N. In our example above,  $d(x_n, x) = 2^n \rightarrow 0$  as  $n \rightarrow \infty$ .  $\|2^n\| = \frac{1}{2^n} \rightarrow O \quad ao \quad n \rightarrow \infty.$ Find the inverse of 5 mod 64.

| In $\mathbb{Z}_{672}$ , $\frac{1}{5} = \frac{1}{1+9} = 1-4+16-64$<br>= $1-4+16$<br>= 15. | + 256 -1029 +<br>Eero                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Eq. in Z with the finite complement<br>converges. It converges to 22.                    | topology, the sequence $(n) = (1, 2, 3,)$                                                                                                                                                                         |
| $(n)_n \rightarrow 22.$                                                                  | In fact for every $a \in \mathbb{Z}$ ,<br>$(a)_n \rightarrow a$ .                                                                                                                                                 |
|                                                                                          | Theorem IF X is Hausdorff,<br>then every sequence in X has<br>at most one limit. (it converges<br>to at most one point.)                                                                                          |
|                                                                                          | 5 Proof Suppose att in a Hausdorff<br>space X where a sequence (xin) - 7 a                                                                                                                                        |
| 1, 13, 25, 84<br>Here pick as max [N. N. ? 1                                             | and (rin) = 6. cubbs as pin open<br>and (rin) = 6. cubbs as pin open<br>which is the second of a b<br>There exists N, such that respectively.<br>rine U for all n > N; also Nz such that<br>xne V for all n > Nz. |
| then pick as max [Ni, Nz] to<br>obtain a contradiction.                                  | Ane U for all n>N; also Nz such that<br>Xne V for all n>Nz.                                                                                                                                                       |

| we p<br>in g   | prefer to u<br>eneral. | nite $(x_n) \rightarrow c$         | g rather th                                             | ran lian Ru = 9<br>n-700                                | · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------|------------------------|------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Ø.X            | are closed             |                                    |                                                         | unts of open sets.                                      | .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       .       . |
| If K,<br>Arbit | K' are closed          | then KUK' is ions of closed set    | closed. (So Sid<br>3 are closed.                        | rite unions of close                                    | d sets are closed.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| De Mo          | organ laws:            | $X - (U A_{e}) =$                  | () (X-Aa)<br>Kei                                        | · · · · · · · · · · · · · · · · · ·                     | · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | · · · · · · · · · ·    | $X \sim (A_{e}) = a_{eI}$          |                                                         |                                                         | · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Given a the    | n infinite set         | and X itself.                      | mplement topolo                                         | gy has as its cl                                        | osed sets                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Let i<br>small | X be a to              | p. space. Given<br>it containing A | $A \subseteq X$ , the i.e. $\overline{A} = \bigcap^{n}$ | Closure of A is<br>$K \subseteq X : K closed,$          | the (unique) $K \ge A_{2}^{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| The int<br>A°  | erior of A<br>= U {US  | is the largest<br>A: U open in X   | open set contain<br>(X-A) =                             | et in A, i.e. $X - \overline{A}$ ; $X - \overline{A} =$ | X ~ A° .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

Theorem There are infinitely many primes. Known proofs: Euclid's proof (elementary) Euler's proof (analytic proof: 27 diverges) This proof is topological. Proof form a topology on X=Z whose basic open sets are the arithmetic progressing ..., -6, -1, 4, 9, 14, 19, ... for example. ...-6,-1, 9, 14, 19, ... for example. Every nonempty open set is infinite. Suppose there are only finitely many primes : (PI < 00 is the set of all primes {-1, 1} = {a e I : a is not divisible by any prime }. = A fack: a is not divisible by p }  $U_{a,p} = \{ x \in \mathbb{Z} : x \equiv a \\ modp \}$ (U, U U, U U, U U U, P, P) is open. However it has only 2 elements, a contradiction More generally, let G be a group. Consider the topologn on G whose basic open sets are cosets of subgroups  $H \leq G$  of finite index, i.e.  $gH = [gh: heH], [G: H] < \infty$ .

T2: Hausdorff  $\odot$   $\odot$ T1: Points are closed i y T<sub>1</sub>: Points are closed (i) 'y If x∈ X and y≠ x, then there is an open nlobed U of x with y ∉ U. T<sub>2</sub> ⇒ T<sub>1</sub>. Exercise: Give an example of a top. space voluch is T<sub>1</sub> but not Tz. One answer: the finite complement topology for an infinite set. Let  $f: X \rightarrow Y$  be any function. For any  $B \subseteq Y$ , the preimage of B in Xunder f is  $f'(B) = \{x \in X : f(x) \in B\}$ . Similarly, if  $A \subseteq X$ , the image of A in Y is  $f(A) = \{f(a) : a \in A\}$ . In general  $f(f(A)) \subseteq A \subseteq f'(f(A))$ Now let X and Y be top. spaces, i.e. (X, J) and (Y, J'). A function  $f: X \rightarrow Y$  is continuous if the preimage of every open set (in Y) is open (in X); i.e. for every  $U \subseteq Y$  open,  $f'(U) \subseteq X$  is open. Exercise: Convince yourself that the "standard" definition of continuity for functions R" > R" is just a special case of this. (for the standard topologies on R and R ).

Theorem If f: X -> Y and g: Y -> Z are continuous, so is gof: X -> Z. Proof If  $U \subseteq Z$  is open then  $g'(U) \subseteq Y$  is open so  $f(g'(u)) \subseteq X$  is open. when are two topological spaces X, Y "the same"?  $(X \simeq Y : X, Y \text{ are homeonophic$  $This means there is a bijection <math>X \rightarrow Y$  taking one topology to the other. I.e. there is a bijection  $f: X \rightarrow Y$  such that f, f are continuous. Eq. X is R with the standard topology; Y is R with the finite complement topology; Z. K. IR with the discrete topology; W is R with the indiscrete topology {Ø, R}  $Z \xrightarrow{\iota} X \xrightarrow{\iota} Y \xrightarrow{\iota} W$  where  $\iota(x) = x$ . If J, J are two topologies on X, we say finist coarsest topology topology J'is finer than J if J'7J on IR (J' is a refinement of J) (J' is coarser than J if J'C J Eq. The finite complement topology (J' is coarser than J if JC J on X is the coarsest topology for which points are closed.

| i.e. any topology in which points are closed is a refinement of the finite complement topology.                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subspace Topology<br>Let $A \subseteq X$ where X is a topological space $X = (X, J)$ .<br>The topology A inherits from X in the most notical way is the<br>subspace topology $J_A = \{U \cap A : U \in J\}$ . |
| Eq. $(0,1) = \{a \in R: 0 \le a \le 1\}$ is neither open nor closed in $R$<br>but it is closed in $[0,1]$ and in $[0,\infty)$ since<br>$[0,1) = (-1,1) \cap [0,1] = (-1,1) \cap [0,\infty)$ .                 |
| If f: A -> R <sup>m</sup> where $A \subseteq R^{n}$ we say f is continuous if it is<br>continuous relative to the standard topology of R <sup>m</sup> and the subspace<br>topology on $A \subseteq R^{n}$ .   |
| · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                         |

 $f: R \rightarrow R$ Eg. not continuous Continuosa  $f: (-\infty, 0) \cup (0, \infty) \rightarrow \mathbb{R}$ If f: A -> R<sup>m</sup> has f(A) EB we might as well think of f as f: A -> B. To say f: A -> R" is continuous is equivalent to saying f: A -> B is continuous. Suppose  $f: A \rightarrow B$  is continuous and let  $U \subseteq \mathbb{R}^m$ . Then  $f'(u) = f'(u \cap B)$  is open in A. Similarly one proves Similarly one proves the converse. Given  $A \subseteq X$  where X is a top. space, there is an inclusion map  $\iota: A \longrightarrow X$   $\iota(a) = a$ . (one-to-one; not onto in general). The subspace topology on A is the coarsest topology for which the inclusion map  $\iota$  is continuous.

Given USX open, i'(U) = UNA  $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ AU (BnC) = (AUB) n (AUC) Quotient Topology Suppose f: X->Y is onto. Given a topology on X = (X, J) the most natural way this gives a topology on Y is by taking the finest topology on Y for which f is continuous. X A Möbius strip The quotient There are three ways to think of this situation. (i) Identify (collapse) certain points of X together (ii) We have an equivalence relation on X. topology on Y is the firlst fopology on Y map f: X-> Y is continuous. ( ( ) A partition of X.

The topology on Y= X/f {V⊆Y: f(V) is open in X}. w X/~ To show this is a topology, use  $\bigcup_{\alpha} f(A_{\alpha}) = f(\bigcup_{\alpha} A_{\alpha})$  $\bigcap_{\alpha} f(A_{\alpha}) \ge f(\bigcap_{\alpha} A_{\alpha})$  $\bigcup \tilde{f}(A_{\alpha}) = f(\bigcup A_{\alpha})$  $\bigcap_{\alpha} f(A_{\alpha}) = f(\bigcap_{\alpha} A_{\alpha})$  $\operatorname{Sin}\left((-\infty,0)\cap(0,\infty)\right) = \operatorname{Sin} \emptyset = \emptyset$  $Sin((-\infty, \overline{0})) = (-1, 1)$  $Sin((-\infty,0) \cup (0,\infty)) = [-1,1]$  $\sin((0,0)) = [-1,1]$ 

(closed) annulus 1/// A ~ (i) closed disk ×1/14 ~ Möbius strip No two of the examples lested here are homeomorphic the is torus Klein bottle not embeddable in p3 -Una PTR = real projective plane identify (1/1/ lean S' (2. sphere)

bombary ~ SI In R<sup>3</sup> consider the following too subspaces Is X ~Y ? Yes.