

A fitter on X is a collection Fr consisting of subsets of X such that
• $\emptyset \notin \mathfrak{F}, X \in \mathfrak{F}$
• IF AEF and AEBSK, then BEF.
• IF $A, A' \in \mathcal{F}$ then $A \cap A' \in \mathcal{F}$.
Every uttratitler is a filter, but not conversely.
A collection Sof subsets of X has the finite intersection property (fip.) it
As all $A_1, \dots, A_n \in \mathcal{O}$ $A_1 \cap A_2 \cap \cdots \cap A_n \neq \mathcal{O}$
A Litter has the fine. If S is any collection of subsets of X having fine. then S generates a
tiller: Fr = i supersets of finite intersections of sets in Sq
= { B S X : A, N A, N N A, S For some A, A,, A, E S }.
This is the (anique) smallest collection of enlocits of X which contains I' and is a titles.
If J. J' are filters on X, we say I' refines I if JGJ'.
If F. F.' are fitters on X, we say F' refines F if FGF. The collection of all fitters on X is partially ordered by refinement.
Given a filter F on X, the collection of filters refining F. has a maximal member by Forn's Lemma. This is guaranteed to be an uttrafilter.
Assume we are given a nonprincipal uttrafiter & on $\omega = \{0, 1, 2, 3, \dots, 3\}$. Construction of the nonstandard real numbers (hyperreals) *R or R* or R.
IR and IR are examples of ordered fields. IR and IR are very similar from first appearances.
eg. If $f(x) \in R[x]$ or $R[x]$ (polynomial in x) of hegree 3 then f has a root (in R or R' respectively). If $f' > 0$ then this root is unique. Positive dements have a unique square root.

But: R is an Archimedean field: it has no infinite or infinitesmal elements. More precisely, if
a e R satisfies D a a a b a b a b a b a b a b b a b b b b b b b b b b b b b
R has infinitesial dements (it is Non Archimedia field).
Construction: Start with $\mathbb{R}^{n} = \{(q_0, q_1, q_2, q_3, \dots) : q_i \in \mathbb{R}\}$ (all sequences of real numbers).
Given 9,6 E R' we can add/aultiply/subtract pointwise
$a_{\pm}b = (a_{\pm}b_{1}, a_{\pm}b_{1}, a_{\pm}b_{2}, \cdots)$
$ab = (a_{0}b_{0}, a_{1}b_{1}, a_{2}b_{2},)$
making Ra into a ring with identity 1= (1,1,1,1,1). It's not a field; it has zero divisors e.g.
$(i,0,i,0,i,0,)(0,i,0,i,) = (0,0,0,0,0,0,0,) = 0 \in \mathbb{R}^{\omega}$
But take an uttrafitter U on w (U nonprincipal).
If $a_i = b_i$ for all $i \in U \in U$ then $a_i \sim b_i$ (equivalence mod U).
$ \begin{aligned} \mathbf{J}_{\mathbf{k}} & \text{fliss and} (0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0,$
Given a, b \in R ^w , let A = {i \in W: a = b; }. Either A \in U (in which case a ~ b) or w A \in U (in which
case $a \neq b$. $\hat{\mathbb{R}} = \mathbb{R}^{\omega} / \omega = \{ [a]_{\omega} : a \in \mathbb{R}^{\omega} \}, [a]_{\omega} = equir. class of a = \{ x \in \mathbb{R}^{\omega} : x \sim a \}.$
of a ere nonzero). Then $\frac{1}{d} = (\frac{1}{d} : i \in \omega)$
Any where that a:=0, ignore or replace by 1.
IR is a field. If $a \neq 0$ then actually $a \neq 0$ ([a] \neq [0],) so $\{i \in \omega : 4; \neq 0\} \in \mathcal{U}$. (most coordinates of a even nonzero). Then $\frac{1}{a} = (\frac{1}{4}; i \in \omega)$ $a \cdot \frac{1}{a} = 1$ A = 1

R is an ordered field. Given a, b e R, either a <b a="</th" or=""><th>6 or 6<9.</th>	6 or 6<9.
$\omega = \{i \in \omega : q_i < b_i\} \sqcup \{i \in \omega : q_i = b_i\} \sqcup \{i \in \omega : b_i < q_i\}$	
Exactly one of these three sets is an utra-fitter set. Corresponding	
$Q \subset \mathbb{R} \subset \mathbb{R}^{\omega}$ $\stackrel{\sim}{=} Given a \subset \mathbb{R}$, identify with $(a, a, q, q,) \in \mathbb{R}^{\omega}$. The standard	tis way R is embedded in R ^w .
standard The topology on $I\hat{R}$ is the order topology: basic open sets $q_ib \in I\hat{R}$.	s are open intervals (9,6),
Eq. $\varepsilon = \int (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots) \int_{\infty} \in \mathbb{R}$ is an infinitesual.	$ Q = \frac{1}{2}, R = 2^{\frac{1}{2}}, R = 2^{\frac{1}{2}}$
Eq. $z = [(1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{3}, \dots)]_{n} \in \mathbb{R}$ is an infratesmal: $\frac{1}{2} = [(1, 2, 3, 4, 5, \dots)]_{n} \in \mathbb{R}$ is infrate.	
Every hyperreal is either infinite (at $\hat{\mathbb{R}}$, $ a > a$ for every positive integer a unique standard part $st(a) \in \mathbb{R}$ (the closest real number to a).	~) or it's bormded : a which case a hea
To compute $f'(x)$ where $f(x) = x^2 + 3x + 7$ using constandard analysis, let $a \in \mathbb{R}$, and Pick $\hat{a} \in \hat{\mathbb{R}}$, $st(\hat{a}) = a$, $\hat{a} - a = \varepsilon$ is an infiniteernal. $f(\hat{a}) - f(\hat{a}) = f(a+\varepsilon) - f(a+\varepsilon)$	
$\frac{f(a+\epsilon) - f(a)}{\epsilon} = 2a + 3 + \epsilon , sf(2a+3) = 2a = f'(a).$	

Warm-up to the proof of Tychonoff's Theorem. Let S be a collection of subsets of X. S has the finite intersection property (f.i.p.) if every finite intersection
Let S be a collection of subsets of X. I have the trane investige property (T. 1. p.) it around the
of sets in S is nonempty i.e.
$S_1, S_2, \dots, S_n \in S \implies \exists \cap S_2 \cap \dots \cap S_n \neq \emptyset.$
(Recall: if S has f.i.p. then supersets of finite intersections of sets in S is a fifter.)
Learna 1.1 Let X be a top. space. Then the following are equivalent.
(i) X is compact. (Every open cover of X has a finite subrover.) Via complematation (use de Morgaislas
(ii) If S is any collection of closed sets with frip. then (S = Ø.
<u>.</u>
An uttrafilter \mathcal{U} on X converges to a point $x \in X$ if every would of x is in \mathcal{U} . (A nobed is a superset of We write $\mathcal{U} \lor x$ in this case. (Recell: The nobeds of x form a filter.) an open nobed.)
Much topology is readily formelated in the language of ultratilities e.g.
· X is Hausdorff iff every ultrafilter converges to at most one point.
. It is compact iff every intratities converges to at least one point.
 X is Hausdorff ; ff every ultrafilter converges to at most one point. X is compact iff every ultrafilter converges to at least one point. A function f: X -> Y is continuous iff it maps convergent ultrafilters to convergent ultrafilters.
. A function f: X -> Y is continuous the it maps convergent waretrillers to convergent minution. <u>Theorem</u> 2.1(a) Let X be a top. space. Then Y is Housdorff iff every ultrafiller on X converges to at most one point of X.
at most one point of X.
Proof (=>) Suppose X is Hausdorff. Suppose U is an uttrafilter on X converging to two different points X = y in X. There exist U, V S X disjoint open sets with x e U, y e V. U(*) ()
points x = y in X. There exist U, V S X disjoint open sets with x e Q, y e V. "(*) (*)
Since USX, UE U. Similarly VEU. Then UNV = DE U. contradiction. (=> Suppose every ultratitler on X converges to at most one point of X.
(=) Suppose every ultratitler on X ^O converges to at most one point of X.

(\Leftarrow) Suppose every uttratitler on X converges to at most one point of X. Let $\pi \pm q$ in X. By way of contradiction suppose that $U \cap V \neq \emptyset$ for every open ublid to f_X and every open ublid V of y. Then Eopen ublids of r? U Sopen ublide of y? has fine. This generates a fitter which in turn retries to an uttrafille U. UNR, UNY a contradiction. So X must be Hausdonff. Theorem 2.16) Let X be a top. space. Then X is compact if every ultrafilter on X converges to at least one point of X. Proof (\Rightarrow) Suppose X is compact. Let U be an uttrafilter on X. Suppose U does not converge to any point of X. So for each $x \in X$, there exists an open while U_x of x such that $U_x \notin U$. So $\xi U_x : x \in X \xi$ is an open cover of X. So there is a finite subcover $\chi = \mathcal{U}_{\chi_{1}} \cup \mathcal{U}_{\chi_{2}} \cup \mathcal{U}_{\chi_{2}} \cup \cdots \cup \mathcal{U}_{\chi_{n}}$ for some $n \ge 1$; $\chi_{1}, \dots, \chi_{n} \in \chi$. So Uri e U for some i, contradiction. (⇐) Suppose every uttrafitter on X converges to at least one point of X. We must show that X is compact. Let S be a collection of closed subsets of X with F.i.p.; we must show ()S≠Ø. Now S generates a fitter which refines to an ultra fitter U2S. By assumption, US x for some point x ∈ X. We will show x ∈ ∩S. If not, then there exists K ∈ S such that x & K. Then X-K is an open nord of x. So X-K & U. But also K & S < U. contradiction. []

altra	filters	gi	ves	tu	e f	olla	w (^	9	ch	ara	cle	ろう	at		of	. 9	pen	L. S	ets	•	• •		• •						• •		
Theore.	<u>~ 2.2</u>	Č	et	X	de	a •	bj	2, S	pa	æ,	•	Cont		let	U.	ΞX.	•	The	2 4	elle	.	ing	22	2 (qui	velc	at	••••••••••••••••••••••••••••••••••••••	· ·	Ø	47
	> U > Wh	(5.6	≈per				H.		اد زم		ОС			De-	÷		1			ha	י א הפינ	U	'∈	Ű.			•		• •		
Cri) (104	evere	r c	an .	cer		er.				23		, et al.	. [.		/ C	ч	J		i p		n İt	, Ç						• •		
<u>Proof</u> (=	ד (<	rivia	ıl.	Su	ppo	જ	U	, è	s i	pe	n.	i Sa	upp	08	als	> 2	Ľ	۱¢	an	ut	- 21	<u>, , , , , , , , , , , , , , , , , , , </u>	er (on	eg.	ive	3 -	to i	a pi	riat y	reu,
Then	U	Nr.	ėU		So	U	E	U				• •		• •									· ·					• •			• •
12	1 	e li	5	hold	S	W	e c	ms	st	pro	ve	U	1	5 0	Pen.		Ţ	E i	not,	th	en	4	rer	20	<u>}</u> 9	bme	2	X	εl	()	
Then (=) Such	that	JAC	 R	 A.C.	n	ihd		f x	. '	ne	ets	· · ·)	(~1	X		(°i.e	. · 6	Q 4	point	ts	v (E	57	le .	U).		16	r (RCT (on .
Sucu	~ · · · · · ·	111	J	2		. ^			2		÷,		e				•		• · ·		• •	0							• •		
7	ONA V	hada	al	~ 2		12	X	. []	ι		10	20.	<i>ф</i> .	(- N.																	
	open .		<i>N</i>	~)	U	1	~~	· W	1					5						ຄ					.						
TF OPA	open v erates	· a · -	Ŀſŧ	2	whi	ich	. • •	etie	es	-6	a	n u	Hm	fitt	on a	U 🔌	x b	e l	lir	B	y ċ	5	U	(69	U	•	•			• •	
TF OPA	ontes	· a · -	Ŀſŧ	2	whi	ich	. • •	etie	es	-6	a	n u	Hm	fitt	on a	U >	x 6	€ l	2.	B	jċ	3	U	(¢9	U.	•	•		· ·	• •	
TF OPA	erates X-	· a · -	Ŀſŧ	2	whi	ich	. • •	etie	es	-6	a	n u	Hm	fitt	on a	U >	x 6	€ (€ (l.	B	y ċ	9.	U	le q	U	•	•	• •	· ·	· · ·	· · ·
TF OPA	ontes	· a · -	Ŀſŧ	2	Con	ich fra	se dic	eti. Lil	25 07	- ()	a	n 44 1	[[*			· ·	•	•••	· ·	•	• •	•	• •	•	• •						· · · · · · · · · · · · · · · · · · ·
TF OPA	ontes	· a · -	Ŀſŧ	2	Con	ich fra	re dic	eti.				n (c 		6779 		• •	•	• •	• •	•	• •	•	• •	•	• •				• •		
TF OPA	ontes	· a · -	Ŀſŧ	2	Cen	ich Fra	re dic									· · ·	•	· · ·	· · ·	· · ·	· · ·	•	· · ·		· · ·	•	•	• •	• •	••••	· ·
TF OPA	ontes	· a · -	Ŀſŧ		Cen	ich fra	re									· · · · · · · · · · · · · · · · · · ·	· · ·	· · · · · · · · · · · · · · · · · · ·	· · ·	•	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	•	• •	· ·	· ·	
TF OPA	ontes				Cen	ich Fra	ve									· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · ·			•			· · · · · · · · · · · · · · · · · · ·	•	•	· · ·	· · ·	· · ·	· · ·
TF OPA	X					ich fra	dic											· · · · · · · · · · · · · · · · · · ·				• • • • • •				•	•	· · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
TF OPA	x-					ich fra	ve dic											· · · · · · · · · · · · · · · · · · ·				• • • • • • •				•	•	· · ·		· · · · · · · · · · · · · · · · · · ·	
TF OPA	erates X-					ich fra	ve dic														· · · · · · · · · · · · · · · · · ·		· ·			· · ·		· · ·		· · · · · · · · · · · · · · · · · · ·	