

Group Theory: an example of a first-order axion	notic system
An informal proof in group theory	
Theorem If G is a (multiplicative) group of expos	ent 2, then 6 is deeligen.
(G has exponent n if g"=1 for all g (G.)	
(Informal) proof: Let a, b & G. Since abab= (ab) ² = 1,	multiplying on the left by "a" and on the right by "b"
gives a ababb = a1b, i.e. ba = ab. 🛛	at a ste and has variable or a 2 (sumble)
Axions of Group Theory: i.e. m(m(x,y), z)= m(x,y)	Special Symbols for first order logic: 3, V, parentles, 1, V,
$(D: (\forall x) ((x+1 = x) \land (1+x = x))$	
$4530C: (\forall x)(\forall y)(\forall z) ((x+y)+z = x+(y+z))$	Crawbels for constructs: *, Bty nears M(x,y)
$[NV: (\forall x) (\exists y) ((x \neq y = 1))$	Symbols for relations : =
We happen to know some groups including C. (cyclic group	, st order ~), S. (symmetric group of degree ~),
$GROUPS = \{ID, ASSOC, INV\} = \{(\forall \pi) (Gr*1) = \dots, $. } (the set consisting of our three axioms of group theory)
St is a group, i.e. St = GROUPS (St is a model of	GROUPS)
ABEL: $(\forall x) (\forall y) (\pi + y = y + \pi)$	· · · · · · · · · · · · · · · · · · ·
ABEL-GPS = GROUPS U {ABEL }. Sz is a non-abelian gre	mp; Sz ≠ ABEL; Sz ≠ ABEL; BEL GPS.
A structure has an underlying cot of demants, forether with	the an interpretation of all the symbols for constants,
functions, and relations.	

How do we reweite our intermal proof (al	ove) as a formal proof in	first only la	gic?	
Z = GROUPS U SEXP2? where EXP2:	$(\forall x)(x * x = 1)$			
ABEL is a theorem in the theory of gr	sups of exponent 2, i.e.	SH ABEL		• • • • • • • •
A theorem is a sequence of steps 54	in which every stop	follows from	L previews 5th	ps by hair
	a statement in	E, or an o	xion of first	ordier logic,
сана на селото на селото на селото селото на селот Я н	or a rule of	inference.		
· · · · · · · · · · · · · · · · · · ·	The sea have	l'annielie)	proof !	
Σμ	[] (his is a some	a (Sumosie)	T	
	Since EXP2 E E			
An outline of a formal proof: 2 F EAP2	(A4)) p. 86		
$\Sigma \vdash (Exps)$	$\rightarrow (\forall a)(a * a = 1))$	(2.) . 86		
	*a=1) Modus Porens	(KIT 9.00		
(√6) → (√6)	(b*b=1) · · · · · · · · · · ·			
S, (V.)	$(a_{4}) \neq (a_{4}) = 1$			
		· · · · · · · · ·		
$\forall a \in A a $	6) · (((a + ((a+6))+. (a+6)) = · a + 1	.)		
	CHN Cost - Istan			
2 H (Va)	(¥b) (9×6 = 6×9)			
RICHARDS BORCHERDS	· · · · · · · · · · · · · · · · · · ·			
JOEL DAVID HAMKINS	a a a a a a a a and a a d	ite gte	• • • • • • •	
0002 · (7-)(7-)(40) (0) · (0- w)	$(a=2)) \wedge (f(x=y)) \wedge (f(x=y))$	「x=モ)) ヘ (ヮ(y=モ	\mathcal{N}	
UNDS (13) (14) (13=) [Ug) (14=1 / 4) - 3.				
"the are at most ill	i there	ace at last	3 element "	
were me at most that	le comparts more	and isome	that a again	and aroup is
ABEL is independent of GRUNPS	(you cannot either prove	This is bo	Cauce C E C	POUPC
abelian), okuur> IT ABEL	and OKUUTS IT ABEL	G = ABEL	but 39t	GROUPS' SHABE
		->		

In an arbitrary first order theory, with axioms Z, a statement θ is independent of Z if
$2 \neq \theta$ and $2 \neq \tau \theta$:
Soundness Theorem: It' 2+0 then 0 holds in every model of 2. then it is provable from 2 i.e.
I MED whenever MEZ. then Z+O.
Assume 2 is consistent
So: O is indépendent of 2 million and indépendent of 2 million of 2 million of a mi
S is consistent if we cannot prove a contradiction from Z is ZH (DA 70) for some D.
Equivalently, 2 is consistent iff it has a model.
Eq. ABEL is independent of GROUPS.
ORDS
GROUPS 11 Soppes is consistent since it has a model. In fact it has a unique model up to isomorphism:
the cyclic group C of order 3. The group Cz (or its theory) is categorical.
GROUPS is not categorial. (There are models, but not a unique model.)
and a function sumbol (() to the language
An alterative to INV: (4x)(=y)((xxy=1) ((x+y=1)) (x+y=1)) (x+y=1) (x+
Manuary (xx / (x + + + + + + + + + + + + + + + + + +
The theory of Z is Th(Z) = { statements provable from Z} = { theorems of Z}

First order theory of graphs has no symbols for cons	stants or functions; there is only one relation
symbol K(:, '), for the binery occurrent or adjacency.	ne platia à que très à l'ardianile
Axions of graph theory: two whitens to marcarle than a	in reaction is symmetric and therefore.
$RREFL: (\forall x \;) \; (\; \neg \; (\; x \sim x \;) \;)$	
SYM: $(\forall x)(\forall y)((x \sim y) \rightarrow (y \sim x))$	
GRAPHS = {IRREFL, SYM}	$M(N T: (s_{s}, r)) \to m T(s_{s}, r)) \to m(s_{s}, r) \to m(s_{s}, r)) \to m(s_{s}, r))$
F GRAPHS	there are at least 4 vertices MAX7: (3x,)(3x,)(3x,)(by)((y=x)) ···· (y=x)
To say that I has exactly 7 vertices, we could write	"There are at most t vertices
$ORD7: (\exists x_1)(\exists x_2)\cdots (\exists x_{q})](f(x_1-x_2)) \wedge \cdots (f(x_{q}-x_{q}))) \wedge (\forall y$	$)((y=x_1)v(y=x_2)v\cdots v(y=x_7))]$
GRAPHS U {OBSF} : axions for graphs with exactly	7. verticez
Axions for infinite graphs: GRAPHS U S MINI MIN2 MIN3, MIN4, }	
In first order graph gheory, we cannot express the condition	tion that a graph is finite.
We can express the condition that a graph has all most	
We cannot express the condition that a graph is countably	afinte.
The diameter of a graph is the max. distance between	two vertices.
The distance between two vertices is the bugth of the	shortest path between them.
eq. To say that a graph has diameter 2 in first order	logic: Diameter 2:
$(\forall x)(\forall y)(\forall x=y) \rightarrow ((x \sim y) \vee (\exists z)(x \sim z) \wedge (\exists \sim y)))$	(diamela at most 2) ~ (3x) (3y) (. (~ 3) ~ (n=9)
dist $(x, y) \ge 1$ dist $(x, y) \le 2$	

_

In first order theory, we can express the condition that a graph has diameter 7 or diameter at most but we cannot express the notion that a graph is connected.	f 7
Graphs of diameter = 1 (i.e. cliques): GRAPHS V {(Vx)(Vy)((x=y) v (x-y))} = COMPL_GRAPHS	• •
has models Ko, Ki, Kz, Kz, Kz, Kq,	
For each candinality K (eg. K=0, 5, 4,0, 2 ⁴⁰ ,) there is a model K _K = COMPL_GRPHS	
and any four models of the Comtably infinite IRI = continuum Same cardinality are isomorphic.	• •
COMPL_GRPHS U { DRD4} has a unique model K _q = [X] up to isomorphism. Th (Kq) = S ell statements in graph theory that hold in Kq } Kq (or Th(Kq)) is categorical: Kq is the unique model (up to isomorphism) of	• •
COMPL_GRATES v ford 73 of Th(Kg)	• •
COMPL_GRAPHS U [MINI, MINZ,] has infinitely many models. But for each cardinality K there is only one "there are inf model (up to isomorphism) of cardinality K.	2 ·
many vertices" This theory is not categorical but it is k-categorical.	• •
	• •

. (Con	sid	ler	4	re o	gr	apl	r : A - 1	wi	fl.		Cor	mt	al	dy		~f	ai	e :	vei	te,	c s	et	•	٤٩	i r	3, 1	7,	29 ₁	37,	11,	58	ę	۲ ^۰ ۲	3	•	(4	ll	P	ing	S	2	-	mos	(4)	•
t i	No	r S	au		ן 10 אי	9		f		P	is is	a		NO I	Ngg	i nq	re	n	ud	. 9	•	(- - -	æ	.9	- - -	5 0		on	squ	a	د ا	no	l p		6	j	On	dr	tic	-	R	بأعا		ify	,).	
¥	29.	5	۲ م	13	1	L	0 1,-	4	are	2	59	a	vre	5	ne	od	5	•	5	t	2,	3	a	re	и	S n	sgu	an	33	~	d	5).				•		•	•	•		•	•			
		5		_13	• •	•		L	et	s	~	QQ	-	e;	5	gn	epl	L	R	F	G	RA	PH	รเ	j.	EIN	F]		• •		•			• •			•			•	•		•	•		• •	
6	4			7		7		•			•	•		•	•	•		• •			•	•	•	•	•	•	•	•	• •			•	•		•				•	•	•			•		• •	
5	3	Y	\bigcirc	X	12	9	•	•	•	•	•	•	•	•	•						•	•		•		•	•	•					•	• •	•					•	•			•			
•		41		37							٠			•				• •			٠			٠		٠		•	• •						۰							• •			•	• •	
	• •				• •			•						•	•			• •			•			•			•	•	• •				•	• •			•				•						
			•	•		•		•	•	•	•	•	•	•	•						•	•	•	•	•	•							•		•	•				•				•		• •	
	• •					0								•	•			• •										•	• •				•				•			•					•		
	• •				• •						•			•				• •						•		•	•	•	• •											•				•			
			•	•		•	•	•	•	•	•	•	•	•	•	:			•		•	•	•	•	•	•	•	•				•	•		•	•				•	•		•	•			
					• •									•																																	
	• •			•	• •	•	•	•	•	•	•	•	•	•	•	•	•	• •			•	•		•	•	•	•	•	• •	•			•	• •	•		•		•	•	•			•			•
•	• •	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•		•	•	•	•		•	•			•	•	•		•	•			•
														•	•													•													•						
	• •				• •						•			•				• •						•		•	•	•	• •											•				•			
•		•	•	•		•	•	•	•	•	•	•	•	•	•	•					•	•	•	•	•	•	•	•				•	•			•			•	•	•			•	•	• •	
•	• •				• •																							•									•									0 0	
								•	•				•	•			•					•		•					• •																		