

Los-Vauglit Test assures us that Th (ACFo) is complete. This uses: the theory has no finite models; and the theory is 2⁴⁰ categoing L t Jerzy Loś, Robert Vaught (1954) C-wordes Logic Algebre (Cauchy) complete & No -> (model) complete « Continuous y compact » No convergent yes categorical » Convected yes closed F Let L be a language and let X be the collection of all L-structures. For any set of sentences Σ over L, let $K_{\Sigma} = sd$ of of L-structures satisfying all the sentences in Σ Then X is a top. space with K_{Σ} as its basic closed set. This space is (topologically) compact. $\Im K_{0}$: θ sentence over L \Im are basic closed sets. Eq. K= $\mathbb{Q}[\delta z] = \{a + b + \overline{z} : a, b \in \mathbb{Q}\}$ has two field automorphisms, $\iota(a + b + \overline{z}) = a - b + \overline{z}$. T $(a + b + \overline{z}) = a - b + \overline{z}$.

C held uncontably many adomorphisms but only two of them are continuous. Where do we get this?
$\mathbb{C} \subset \mathbb{C}[x] \subset \mathbb{C}(x) = K \subset K$
The ring C[x] has automorphisms f(x) ~ f(x+a)
$K = \mathbb{C}(x) = \begin{cases} \frac{f(x)}{q(x)} & : & f(x), g(x) \in \mathbb{C}[x] \end{cases}$
is a field extension of C and it's not alg. closed.
K[t] has irreducible polys eg. t-x e K[t]
\overline{K} is an alg. closed field of char. O $ \overline{K} = 2^{R_0} = C $
But there is only one alg. closed field of char. O for each uncomtable cardinality (the theory of ACF, is uncountably categorical) so $K \cong \mathbb{C}$.
x has lots of automorphisms i.e. I has lots of automorphisms.
R has only one automorphism, the identify 1(a) = a.
R has only one automorphism, the identify $I(a) = a$. Axiang for R?
R has only one automorphism, the identify $I(a) = a$. Axians for R? Field axions
R has only one automorphism, the identity $I(a) = a$. Axians for R? Field axions Introduce a new binary relation symbol '<' ($a < b$ is a shorthand for $R(a, b)$) and axions $(\forall a)(\forall b)[(a < b) \vee (a = b) \vee (b < a)) \wedge \neg[(a < b) \wedge (b < a)] \wedge \neg[(a < b) \wedge (a = b)] \wedge \neg[(a < b) \wedge (a = b)] \wedge \neg[(a < b) \wedge (a = b)]$ $(\forall a)(\forall b)(\forall c)((a < b) \wedge (b < c)) \rightarrow (a < c))$

(VaXVb)(Ve) ((a <b)-> (a+c < b+c) ~ (c>o)-> (ac < bc)])</b)->
R is the migne ordered field which is (Cauchy)-complete and having Q as a dense subfield.
But we cannot state "Cauchy complete" in first order theory of fields.
How much of the theory of R can be captured in first order logic ?
Ordered field axions
• $(\forall a)(a \neq 0 \rightarrow a^2 > 0)$
• $(\forall a)(a > 0 \rightarrow (\exists b)(b=a))$
 Every polynomial f(x) ∈ ℝ[x] of odd degree has a root. Eq. for degree \$
$(\forall a)(\forall b)(\forall c)(\exists x)(x^3+qx^2+bx+c=0)$
The first order theory of R is complete.
However the theory is not K-categorical for any cardinality K. (No models for K finite; more than one for each infinite K.)
Eq. for $K = R_0 : \overline{Q} \cap R$
For K= 2 ⁴⁰ : IR; hyperreals *R
Any model of RCF is a real closed field. Every real closed field is <u>elementarily</u> equivalent to R (i.e. has the same first order theory). R and C are elementarily equivalent.
· · · · · · · · · · · · · · · · · · ·

Emil Artin (1927) proved the Hilbert 17th problem using mathematical logic.
Hilbert's 17th Problem such that \$70 (i.e. \$(x1,, Xn) 70 for all X1,, Xn E R).
Let $f(x_1, \dots, x_n) \in \mathbb{R}[x_1, \dots, x_n]$, is it necessary then $f = s_1^2 + \dots + s_n^2$ for some
rational functions $s_i(x_1,, x_n) \in \mathbb{R}(x_1,, x_n)$? (Phiston: $k \leq 2^n$)
Motekin's example: $n=2$. $f(x,y) = 1-3x^2y^2 + x^2y^4 + x^4y^2$. This is not expressible as a sum of
Squares of polys out
$f(x,y) = \left(\frac{x y (x+y-2)}{x^2+y^2}\right)^{-} + \left[\frac{x y (x+y-2)}{x^2+y^2}\right]^{-} + \left[\frac{x - y^2}{x^2+y^2}\right]^{-} + \left[\frac{x - y^2}{x^2+y^2}\right]^{-}$
Note: $1 + x^{\frac{4}{y^2}} + \frac{x^{\frac{2}{y^4}}}{3} \ge (1 + x^{\frac{4}{y^2}} + x^{\frac{2}{y^4}})^{\frac{1}{3}} = x^{\frac{4}{y^2}}$ by the aritmetic-geometric mean inequality
So f(x,y) ≥ 0 Sor all xy.
If $f = s_i^2 + \cdots + s_k^2$ for some $s_i(x, y) \in \mathbb{R}[x, y]$ then deg $s_i \leq 3$, so $s_i(x, y)$ may have terms
1, x, y, x, xy, y, xy, xy, xy
$S_{i}(x,y) = a_{i} + b_{i}x + c_{i}y + d_{i}\pi y + e_{i}x^{2} + f_{i}y^{2}$
In R, the positive elements are squares. $S_i^2 = 2di\pi g + \cdots$
(Not true in w) Consequence: Aut R = 1. If \$\$ E Aut R i.e. \$: R->R is bijective and \$(a+b) = \$\$(a) + \$\$(b) for, all
then $\phi(a) = a$ for all $e \in \mathbb{R}$. Why? $\phi(a^2) = \phi(a)^2 = \phi(a) > 0$ if $a > 0$. $\phi(ab) = \phi(a) \phi(b) = a b \in \mathbb{R}$

$S_0 \phi(a) < \phi(b) \iff \alpha < b$.	$\phi(o) = o$
	$\phi(z) = \phi(H) = \phi(1) + \phi(c) = 1 + 1 = 2$
	$\varphi(u) = u$
€7 6-9>0	$\varphi(\alpha) = \alpha$ for all $\alpha \in \mathbb{R}$
\Leftrightarrow $a < b$	p(a) = q q $1 = 10$ q $1 = 10$ q
(ompare: DIVE) is also an ordered of	ield but it has wontriver an comorphism of (a+bir)- a-bir
tor all a, be w. Hilbort's 17th mally is true for n=1:	every fixe Rix) with fixe a for all x satisfies
$f(x) = q(x)^2 + h(x)^2$ for some $q(x)$, $h(x)$	ERTX]. Why? Factor
$f(x) = \lambda \widehat{\Pi} (x - r_i)^2 \cdot \widehat{\Pi} ((x - s_i)^2 + t_i^2)$	shere $\lambda \geq 0$, $\lambda = a^2$
$\mathbf{J}_{\mathbf{r}}^{I} = \mathbf{r} \qquad \mathbf{J}_{\mathbf{r}}^{I} = \mathbf{r} \qquad $	
$(a^{2}+b^{2})(c^{2}+d^{2}) = (ac-bd)^{2} + (ad+bc)^{2}$	
Proof of Hilbert's 17th Roblem (Artin; S	erre)
let $f = f(x_1, \dots, x_m) \in \mathbb{R}[x_1, \dots, x_m]$. Suppose	e f is not a sum of squares of rational timetions; we must
Show F(a,, an) < 0 For some Q1,	$\mathbf{a} \in \mathbb{R}$
T = { K(X1,, Xn) = field of rational funct	notions in f?
$= \{ s_1^* + \dots + s_k^* : s_i \in F \}$ Note: T	TGT, TTGT, a ET for all a EF.

T defines a preorder or F , namely for $g,h \in F$, we say $g \leq h$ iff $h \cdot g \in T$.
"<" is transitive but it's a partial order in general.
It's an order $\mathcal{F} \mathcal{F} \mathcal{T} \mathcal{U}(-\mathcal{T}) = \mathcal{F}$ and $\mathcal{T} \mathcal{O}(-\mathcal{T}) = \{0\}$.
$(-T = \{-g : g \in T\}$
We are assuming fET.
Among all preorders containing T but not containing & choose a maximal preorder & using Zorn's lemma. Lotally ordered
let ?Pa: are A ? be a collection of preorders on F with Pa 21, f& Pa
(i.e. for every aper, either Pas Pa or Pas ha)
({Par} is a chain) Then P= V Par is an upper bound for the chain i.e. Pa SP
for all de A. Then P is a preorder (D.DCP PDCP 2CP) and P2T f&P
By Zorn's Lanna there exists a marinal preorder P as above.
(i) Show $-1 \notin P$. If $-1 \in P$ then $f = \left(\frac{1+f}{2}\right)^2 + (-1)\left(\frac{1-f}{2}\right)^2 \in P$, a contradiction.
(ii) Shows -f e P. Suppose -f e P and consider $\vec{P} = P - Pf = \{a - bf : a, b \in P\}$ which is a preorder.
$\tilde{P} + \tilde{P} = \tilde{S}(q, -b, f) + (q_2 - b_2 f) = (q_1 + q_2) - (b_1 + b_2)f : q_1, b_2 \in P_2^2 \leq \tilde{P}$
$\tilde{P}\tilde{P}$: $(a,-b,f)(a,-b,f)$
$= (a_1 a_2 + f_1 b_1 b_2) - (a_1 b_2 + a_2 b_1) f \in \tilde{P} \qquad P \supset P \qquad -f \notin P \\ f \subseteq \tilde{D}$
T By maximality of P, feb EP
$f_{-} \circ h f_{-} \circ h = \frac{q}{1+b} = (1+b) \circ \frac{1}{2}$

ciu, >	Given ge	F, S	how g	e P		-g€1	· · · · ·	· · ·	• • •				• •	0 0	• •	• •	0 0		
	Assume	9∉ f		show	-ge	P.	WLC	°G g-	ŧ0.										
	Consider	$\tilde{P} =$	P+ P		Ac	in 1		p is	a pre	order	· · P	21		P>	P ·	'র্যান (ce	94 P	n n r
	2	R.		1-0-1	1	Д			L. Logo	L	3. 0-		e -		1.	· ·		a la c	D
	g€P.	, py	maxin	Add the	3 .01		· · · ·			TE 1		,	T=	4+	b g .	50	~ ~	abe	r •
	-bg=	a-f		-g =	4	-+-=	6.1	(a-f).((b) ²	GP			• •	• •	• •	• •	• •	· · ·	• •
Civ)	PO(-P)	= \$0	3		If	4=0.	· · ·	eP, ·	-qeP	then			• •		• •	• •	• •	• • •	• •
		· · · ·		(1)2	D	J '	can fre	en a						0 0	• •	• •	0 0		
· · · ·		-(י בא	(q)				5											
			1 01		0			·	•	5									
(F, ≤	E) is an	ordere	l fiel	d a a	oliera	2	ask	, <i>«</i>	b-a	EP.						• •	• •		• •
(F, ≤	E) is an H's an	ordere	l fiel	2 (#	voluera ?, ≤	2 1 1	a≤b		b-q F	∈P.	• • •	• • •	•••	• •	• •		• •	· · ·	• •
(F, ≤ ₿,	E) is an It's an the Tarski	ordere oxtens Torus	l fiel ion of fer P	2 (R	voluera ?, ≤ °) () (5 () (5 () (7 () () (7 () ())))))))))	a≤k (1,	, <	b-a F Solist	EP.	stæt	emen	+ + +	-fi	st o	oder	the	ory .	· · ·
(F, ≤ By	E) is an It's an the Tarski dered field	ordere oxtens Trans	l fiel ion of fer P th	2 (R rincif	where $r_{i} \leq r_{i}$	2) (a,	a≤b (r.,	, ↔ , x) [€]) € ℝ ⁿ	b-a F solist realit	EP.	stat this	èmen state	t in	-fir tr	st	oder	the	erj	· · ·
(F, ≤ By + r	E) is an It's an the Tarski dered field	ordere octens Toaus s, the	(fiel ion of fer P th t	d 2 (# brincif ere	where $c_{i} \in c_{i}$	2) (a, , &(x,	a≤k (r.,, 4	, ↔ , π.) ^e) ∈ ℝ ^m) < 0	b-a F Solist realit	EP. ies a sing - fla.	stat this	èmen state z) <	t in men D	fi t. Er	st o So	oder me a	the	مر د آلا ا	· · ·
(F, ≤ By + r He	E) is an It's an the Tarski dered field re -f C P	ordere ortens Trans s, the ie.	l fiel ion of fer f m th f< c	d 2 (R Princif Rrc 0 i.e	where $R_{i} \leq r$	2) (a., \$(x.,	$a \leq b$ $(\mathbf{x}_{i_1}, \cdots, \mathbf{x}_{n_i})$, ↔ , π.) ^e) ∈ ℝ ^m) < 0	b-a F solist realities	eP. ies a sing - fla,	stat this	ēmeni stato ?n) <	t in men D	fi t. For	st o	oder me 9	the	•~y q_ ∈ R	е С.
(F, ≤ By of r Her	E) is an It's an the Tarski dered field re -f C P	ordere oxtens Trans s, the ie.	(fiel ion of fer P th f< c	d 2 (R brinciq erc 2 i.e	where $c_{i} \leq c_{i}$	2) (a., B(x.,	$a \leq b$ $(\mathbf{x}_{i_1}, \dots, \mathbf{x}_{n})$, ↔ , x.) ^e) € ℝ ⁿ) < 0	b-a F" solist realit	EP. ies a sing - f(a,	stat Eris ,, s	ēmen stato ?n) <	t in meni D	t: Er	st o	oder me 9	the	o~y q ∈ R	
(F, ≤ By + r He	E) is an It's an the Tarski dered field re -f e P	ordere octens Toaus s, the ie.	l fiel ion of fer P n th f< c	d 2 (R brincif ere 2 i.e	$voluera r_{i} \leq r_{i}r_{i} \leq r_{i}$	2) (a, , \$(x, ,	$a \leq b$ $(x_{i_1}, \dots, a_{i_n})$ \dots, x_n	, ← , ⊼.) [€]) € ℝ ^m) < 0	b-a F solist realit	eP. es a fla,	stæt this ,, q	ēmen state ?n) <	t in men O	-fi' t. Ex	st	oder me 9	the	o~y q_ ∈ ¶	
(F, ≤ By of r Her	E) is an It's an the Tarski dered field re -f E P	ordere oxtens Trans s, the ie.	l fiel ion of fer P th f< c	d 2 (77 brincif ere 1.e	where $r_{i} \leq r_{i}$	2) (a., \$(x.,	$a \leq b$ $(x_{i_1}, \dots, q_{i_n})$ \dots, g_{i_n}	, ↔ , π.) [€]) € ℝ ^h) < 0	b-q F Sodist realit	EP. ies a sing f(a,	stæt fluis ,, q	ēmeni stato ?n) <	t in meni D	fi t.	st	oder me 9	the	•¥ 9, € 1	2.
(F, ≤ By tr Her	E) is an It's an the Tarski dered field re -f C P	ordere oxtens Trans s, the ie.	(fiel ion of fer P n th f< c	d rincif ere i.e	where $c_{i} \leq c_{i}$	2) (a,, \$(x,,	$a \leq b$ $(\mathbf{x}_{1}, \dots, \mathbf{x}_{n})$, ↔ , x.) ^e) € ℝ ⁿ) < 0	b-a F solist realit	eP. ies a fla,	stæt ftris ,, s	ēmen stato ?n) <	t in men O	t.	st	oder me 9	the	Q € 7	
(F, ≤ By €r He	E) is an It's an the Tarski dered field re -f E P	ordere oxtens Trans s, the ie.	l fiel ion of fer P n th f< c	d Fincif ere	$voluera c_i \leq c_ic_i < c_ic_ic_i < c_ic_ic_i < c_i$	2) (a,, \$(x,,	$a \leq b$ $(\mathbf{x}_{1}, \dots, \mathbf{x}_{n})$, ← , ⊼.) ^e) ∈ ℝ ⁿ) < 0	b-a F solist realit	eP. es a fla,	stæt this ,, s	ēmen stato ?) <	t in D	fi t.	st	oder me 9	the	Q, € /k	
(F, ≤ By Her Her	E) is an It's an the Tarski dered field re -f e P	ordere octens Toaus s, Hu ie.	l fiel ion of fer P n th f< c	d Frincif ere i.e	voluera $r < rr < r$	2) (a., &(x.,	$a \leq b$ $(x_{i_1}, \dots, x_{i_n})$, ← , ⊼.) [€]) € ℝ [™]) < 0	b-a F solist realit	eP. ering f(a,	stæt	ēmen stato ?n) <	t in meni	fi t.	st	oder me 9	the	Q, € /	
(F, ≤ By Her	E) is an It's an the Tarski dered field re -f C P	ordere ortens Trans s, the ie.	(fiel ion of fer P th f< c	d Frinciq ere i.e	$voluera r_{i} \leq r_{i}$	2) (a., \$(x.,	a≤b (r., , 4. , x.,	, ← , x.) ^e) ∈ ℝ ^h) < 0	b-a F solist realis	eP. Eing f(a,	s la t this ,, 4	ēmen stato ?n) <	f in meni			oder me 9	the	Q € 7	2
(F, ≤ By f/en	E) is an It's an the Tarski dered field re -f C P	ordere oxtens Trans s, Hu ie.	(fiel ion of fer P n th f< c	d Frinciq ere	$voluera r_{i} \leq r_{i}$	2) (a,, \$(x,,	$a \leq b$ (x_1, \dots, a_n) \dots, x_n	, ← , x.) ^e) ∈ ℝ ^m) < 0	b-a F solist realit	eP. ies a f(a,	stæt ftris ,, s	ēmen stato ?n) <	t in meni	t.	5 t • •	oder me 9	the		

Indiscernibles ... coming soon Here we consider only points, lives and their Axions for projective plane geometry: incidences. Objects: points and lines $(\forall \pi) (P(\pi) \leftrightarrow (\neg L(\pi)))$ Relations: P(.), L(.), I(.,.) $(\forall \pi)(\forall y)(\exists G_{x}q) \rightarrow (\aleph_{x}) \leftarrow L(y))$ Axions: (i) Aay two distinct points are on a unique line. $(\forall x)(\forall y)(P(x) \land P(y) \land \neg(x=y) \rightarrow (\exists z)(I(x,z) \land I(y \land z) \land (\forall w)(I(x,w) \land I(y,w))$ (ii) ~ Aug two distinct lines meet in a unique point. ~ (w=z))) (iii) nondegeneracy axion to the points with no three of them collinear. which models are unique up to isomerphism Models? There are some orders (sizes) for Infinite planes. Finite projective planes: n²+n+1 points (lines 7 lines 7 lines 3 points/line 3 lines/point n+1 lines / points / line are many proj planes n+1 lines / point of order K (with n = order of the plane cardinality K).

Does there exist an infinite	projective	plane	whick	13 2	K0- C	itegor	ical	i.e.	its	the	ory.		
has a unique countable	model ?												
					to a	10 B	n at	mos	- line	L	• • •		
Ceneralized Quadranglos	(i)		my free	Potes	t	m l	th	en t	here	- îs: c	ζ	• •	
	(ii)		l i i i i	migu	e Q	on	l	joine	d to	₽.	• • •		
in particular and 1.3	2 2	X				• •	н н 1 н		• • •	• •	• • •	• •	• •
		<u> </u>		• • •	• • •	· · ·		••••••••••••••••••••••••••••••••••••••	· · ·		• • •		• •
				• • •		• •			• • •	• •	••••	• •	• •
Lu every cese	Sti					• •	• •		• • •				• •
C_{α} erec $t = \infty^{2}$													
If s=2 then t < 9	(earsy).								• • •		• • •		
If $s=3$ then $t=9$	(4 pao	jes)					• •		• • •		· · ·	• •	• •
$tf s = 4 the t \leq 10$	s (Ches	lra)											
		• • • •		• • •					• • •	• •			• •

(et A be a set of first order sentences over a language L (i.e. e theory) and let M = A (a model of A). A set of indiscernibles S ≤ M such that for every distinct s,..., su∈ S and t,..., treS and every propositional function $\phi(x_1,...,x_k)$, $\phi(s_1,...,s_k)$ if $\phi(t_1,...,t_k)$. Eq. let A be the axions of field theory, $C \neq A$ let S be any algebraically independent subset of C. This means that for all similar $f \in S$ and nonselve $F(x_1, \dots, x_k) \in \mathbb{Q}[x_1, \dots, x_k]$ then $f(s_1, \dots, s_k) \neq 0$. eg. {IT}, {e}. There are alg. ind. subset of C of uncomtable size! Is {T, e} alg. indep. ? Any set S C which is alg. indeg. is a set of indiscernibles. Let it he the axions of graph theory. Consider a graph F = A that books like the the axions of graph theory. Consider a graph F = A that books like where a, ..., as are infinite cardinals Picke site Kai, ..., site

Proj. Plane <> bipartite graph of diameter 3 and shortest cycles have

let I be a language and I a set of sentences over I. Let ME A be an L-structure. A subset SCM is a set of indiscernibles if for every k71 and $a_1, \dots, a_k \in S$ distinct, also any $\phi(\kappa_1, \dots, \pi_n)$ formula over I, $b_1, \dots, b_k \in S$ distinct, $M \in \mathcal{A}$ be an L-structure. $M \notin \phi(a_1, \dots, a_k) \in \mathcal{B}(b, \dots, b)$ $\mathsf{M} \models \phi(a_1, \dots, a_k) \Leftrightarrow \phi(b_1, \dots, b_k)$ Eq. L = (·, +, 0, 1) = language of rings with identify 1 A = axioms of field theory M = C Scang algebraically independent set (i.e. for a, ..., a ES distinct, $f(x_1, \dots, x_k) \in Q[x_1, \dots, x_k]$ nonzero poleg., $f(q_1, \dots, q_k) \neq 0$.) Let $s, t \in S$. Eq. $\phi(x, y)$: $x^2 + xy + y^2 = O$. For all s,teS (s+t), \$(s,t) is false. $\psi(xy): (\forall u) (\exists v) (ux + vy = 1).$ y(s,t) is fine for all stt in S Dense Linear Order Without Endpoints f = (<), $A = a_{x}ions$ of DLO without endpoints, $M^{=}(Q, <)$ model ordering on Q. $M \neq A$ (the unique contable model up to isomorphism). This structure has no indiscerning sets S with |S| > 1. If $s \neq c S$ with $s \neq t$ then (s, t), (t, s) are discernible eq. $s < t \rightarrow (t < s)$

A set of order indiscernibles in M is an ordered set S = { sz : t e Q } Such that whenever t, < ... < tk in Q and \$ (X,..., XL) is a prop. formula over L we have $M \models (\phi(s_{t_1}, \dots, s_t) \notin \phi(s_{u_1}, \dots, s_{u_k}))$. Now $\mathcal{L} = (\langle \rangle), M = (Q, \langle \rangle), S = Q.$ S is a set of order indiscernibles, Theorem let I be a collection of sentences over a language L. If A bas an infinite model M= A, then A los an infinite under with a set of 52 orden indiscernibles S ⊆ M, S= {s₁ : t ∈ Q}. (Here we have chosen S having order type (R, <) but you can choose any total order you want and get models of cA with sets of order indiscernifices of the desired order type.) 2 9 9 Remark: The Upward lowenheim Skolen Theorem says: then it also has models of every cardinality > 1011. has an infinite model M

$ A = B $ iff there is a bijection $A \rightarrow B$. $ A \le B $ iff there is a bijection between A and a subset of B (i.e. an injection $A \rightarrow E$ $ A \le B $ iff there is a bijection between A and a subset of B (i.e. an injection $A \rightarrow E$ $ A \le B $ iff there is a bijection between A and a subset of B (i.e. an injective sp
eg. $N = \frac{31}{2}, \frac{3}{3}, \dots, \frac{3}{3}, \frac{10}{2}, \frac{3}{2}, \frac{3}{1}, \frac{3}{1$
$ \mathbf{N} = \mathbf{N}_0 = \mathbf{Q} = \mathbf{Z} = \mathbf{Q}^* = \mathbf{B}_0 (n = 12, 3) \text{countedby infinite}; \mathbf{R} > \mathbf{H}_0, \text{why}?$ $ \mathbf{N} \rightarrow \mathbf{R}, \mathbf{x} \mapsto \mathbf{x} \text{ is an injection so } \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection so } \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection } so \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection } so \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection } so \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection } so \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection } so \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection } so \mathbf{N} \leq \mathbf{R} . \text{Countoor should there is no bijection } so \mathbf{N} \leq \mathbf{R} .$
$\mathcal{W}(S) = \text{power set of } S = \{ \text{all subsets of } S \}, \\ R = \mathcal{P}(N) , \\ \mathcal{R}(S) = \mathcal{R}(S) , \\ \\ \mathcal{R}(S) = \mathcal$
Sizes (cardinalities) of AS. $(R) \ge 4$, $(R$
$P(H : R) \ge 1/2$ i.e. there exists a set B with $ N < B < R $.
· · · · · · · · · · · · · · · · · · ·

By ZFC, every set Scan be will ordered. There is an order relation "I" on S such that. . if add and bdc then a dc · if ask and best than a=6. (a \$ k means a 16 or a=6) x shoots at positions $A_x \subset R$, $|A_x| \leq K_0$ The Axion of Symmetry AS: x **∉** A_x Charles I V AS: There exist x=y in R such that x & Ay, y & Ax. (Neither of x, y hits the other.) AS is very easily believeble. AS is equivalent to 7CH

Proof of CH implies 7AS: Assuming CH, IRI = S, so well order (R, A) of type w,
For every reR define Ar = {y = R : y < r}. reR seys r < w, so r is a contable
$\gamma \in \chi$ $x \in \omega$, ordenal.
$s_0 A_{\chi} \leq S_{t_0}$
re Ay => x 1 y & Since rigg one of these holds. This contradicts AS.
$\alpha \in A_x \iff y \triangleleft x$
Proof of TCH-7 AS: Assuming there exists BCR with So < (B) < (R) say
181= fr IRI 2 St and let Im A, be any assignment of comtable subsets of R
to the real numbers x = R. For R.
$R = 1)A = \{all points hit from B \}$ $[R] \leq S()$
$x \in B$ $(a \in C)$ $(a \in C$
$B_2 = \bigcup_{x \in B} A_x$ $ S_2 = N, etc. = 500 002 03 0 0 0 0 0 0 0 0 $
Since $ B^* < R $ we can pick $x \in R$, $x \notin B^*$. We want to pick
$y \in B^*$, $y \notin A_x$. Since $ A_x = \Re_0 < B^* $, such y exists.
Also x & Ay since points y = Bt can only hit other points in Bt.
Thus AS holds

Freiling c. 1986 AS = AS, AS = AS,	introduced AS. But	this uses actually $3 \mapsto A_{a} \subseteq R$ (due to Sierpinski. For x # y in R)
there exist	-Roce distinct *, y, z eR	such that none	Axy ≤ Sho of them are shot by the
Ptuer Ewo	$z \notin A_{x,z}$		
AS2 is equivale AS3	wit to $ R \ge \aleph_3$. - $ R \ge \aleph_4$	· · · · · · · · · · · · · · · · ·	
· · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · ·	

Theorem (Cherlin) Let Q be a generalized quadrangle with k points on every line, $k \in [3, q, 5]$. Then Q is finite. (Actually known previously for k = 3, 4.) language: I(x, y) binary relation "x is i-right with y" i.e. "y or "x P(x), L(y) many relations. Proof Suppose the theory of GQ's with k points per line has an infinite model. Then it has an infinite model with a set $S = \{l_t : t \in Q\}$ of order indiscernible lines. lo lo li 2 2 2 2 2 2 2 WLDG l, 123 5- 8 $\frac{1}{123^{\circ}k} = \frac{1}{123^{\circ}k} = \frac{1}$

By order - indiscersibility	wheneve o <s< th=""><th><t, point<="" th=""><th></th><th>le is joined</th><th>to poi</th><th></th><th>۴ ل_و .</th><th>•</th></t,></th></s<>	<t, point<="" th=""><th></th><th>le is joined</th><th>to poi</th><th></th><th>۴ ل_و .</th><th>•</th></t,>		le is joined	to poi		۴ ل _و .	•
Re-index:	$e = l_{-1}$							•
	$\frac{1}{2}$ l_{i}							•
· · · · · · · · · · · · · · · · · · ·	$\frac{2^{1}}{l_2}$							
Suppose o(i)=2.	(wlog)	· · · · · · ·	· · · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · · · ·	•
For each $t > 0$ $(t \in Q)$	let my be th	e line joining	g point)	on lt	with poi	int 2 or	l _t .	•
This gives from §	l: tell a re	us set of	lives Emt:	t∈ Q t		m _t ()	mt. = Ø	•
• • • • • • • • • • • • • • • • • • • •	00	· · · ·	allation .	Su con		to 3 d	i linos	i'e
· · · · · · · · · · · · · · · · · · ·	for all t = t' again a collection	and the of order	collection indiscer	ξm _i : te	€ Q , [−]	t>03 0	(ines	י <mark>לי</mark> י
12 k m, IP	for all t≠t' again a collection ve replace the	and the of order	collation i-discerv	{m _t : te illes. with {m _t }		t>0} #	(ines	i 5
$\frac{12 \cdots k}{12 } m_1 $ The the	for all t≠t' again a collection ve replace the the new 5	and the of order original { is a deraw	collation i-discern l _t s _t u generat	{m _t : te illes. sith {m _t } satisfying		t>0} a	(ines	
$ \begin{array}{c} 1 & 2 & \dots & k \\ & & & & \\ & & & & \\ & & & & \\ & & & &$	for all $t \neq t'$ again a collection we replace the the new 5 $\sigma(c) = 2, \sigma(2)$ TF $k = 3$ we	and the of order original { is a deran)=1. have a	collation i-disceri l _t s _t i generit	{m _t : te illes sith {m _t } satisfying	Q , -	t>0} #	(ines	
$ \begin{array}{c} 1^{2} \cdots k \\ 1^{2} \cdots k \\ 1^{2} \cdots k^{m_{2}} \end{array} $ the	for all $t \neq t'$ again a collection we replace the the new 5 $\sigma(c) = 2$, $\sigma(2)$ If $k = 3$ we	and the of order original { is a deraw)=1. have a For $k=9$	collation i-disceri l _t s _t i generit sotradiction 5 we	<pre>{m_t: te id les. sith {m_t} satisfying on ! numit work</pre>	Q ,	t>o} of iffe have	er_	
$\frac{12 \cdots k}{12 \cdots k} m_1$ $\frac{12}{12} \cdots k m_2$ $\frac{12}{12} \cdots k m_2$	for all $\pm \pm t'$ again a collection we replace the the new 5 $\sigma(x) = 2, \sigma(2)$ If $k = 3$ we	and the of order origical { is a deraw)=1. have a For $k=9$	collation i-disceri l _t s _t generat sotradiction 5 we	{m _t : te illes with {m _t } satisfying on : nunt work	Q ,	t>o} #	(ines der.	

Set Theory ZFC axions for first order set theory. See Cameron; Borderds Richard Borcherds YouTuber -> Zermelo. Fraenkel (#9 vikeos) IF Shas n elements Avoid Russel's Paradox ! then P(S) has 2" elements Starting with the top on b= \$7 Recursively V = P(Vx) $V_{ij} = -V_{ij} \cup V_{ij} \cup V_{ij} \cup \cdots$ $V_{\omega+1} = \mathcal{P}(V_{\omega})$ (p(((())))= {0, 101, [0] } {0, 10] Noutr = P(Voutr) $\nabla_2 + (f(0)) = \{0, \{0\}\}$ 8(0) = {ø{ $V_{\omega,2} = V_{\omega+\omega} = V_{\omega} \cup V_{\omega+1} \cup V_{2}$ Ø = 5 3 Keep going The Von Neumann Universe of Sets $V_{0}, V_{1}, V_{2}, \cdots$ V HA VWHO

Axions of ZFC : language 'E', '=' or just 'E' (include '=' as a standard symbol
in first order (ogic)
Axion of Extensionality Two sets are equal if they have the same elements.
$(\forall x)(\forall y)[(\forall z)((z \in x) \leftrightarrow (z \in y)) \rightarrow (x = y)]$
Axion of foundation No set & can satisfy XEX. More generally, there is no intinite
descending sequence x > x, >x, >x, >x, > x, > x, > x, + (*)
Every nonempty set & has an element yex which is als joint from X, he. ynx= Ø,
$(\forall x)(x \neq \emptyset \rightarrow (\exists y)(y \in x \land y \cap x \in \emptyset))$
$(\forall x)(((\exists z)(zex)) \rightarrow (\exists y)(yex) \land \neg (\exists z)(zey \land zex)))$
This is equivalent to (sk). If $x_0 \ni x_1 \ni x_2 \ni x_3 \ni \cdots$ then $y = \{x_0, x_1, x_2, x_3, \cdots\}$ is a conserved but if we take any element of y, it has the form x_n for some M , with
$x_{n+1} \in \mathcal{Y} \cap \mathcal{X}_{n+1}$
Conversely F our new axion fails then x = x, = x, = x, =
$\frac{1}{2}$
B: {x \in A : $\phi(x)$ } Use Axion of Separation/Selection/Specification: (one axion for each formula $\phi(x)$)
$(\forall A)(\exists B)(\forall x)((x\in B) \leftarrow \exists (x\in A \land \phi(x)))$

$(\forall x \in A)(\phi(x))$ means $(\forall x)((x \in A) \rightarrow \phi(x))$		
$(\exists x \in A)(\phi(x))$ $(x \in A) \land \phi(x))$	· · · · · · · · · · · · · · · · · · ·	
$(\exists x \in A)(\phi(x)) - (\exists x)(A \ni x!E)$	$((\forall w) ((w \in A) \land \phi(w)) \rightarrow w = \gamma$	
Axiona Schema of Replacement		· · · · · ·
If you had a function f: A -> B then we want to Here f can be implicitly defined by a torunka \$(x,c) if for every XEA there is	x a sel. A unique
y $\in \mathbb{B}$ satisfying $\phi(x,y)$. ($\forall A$)($\forall B$)[($\forall x \in A$)($\exists : y \in B$)($\phi(x,y)$) \rightarrow ($\exists C$)($\forall y$)	$((y \in C \leftarrow 7 ((y \in B) \land (\exists x \in A)(\phi(xy)))))$	
Axiom of Pairing Instities Sxy).		
(Vx)(Vy)(JA)((xeA) ~ (yeA)) Then SzeA	$(z=x) \vee (z=y) = \{xy\}$	
Note: If x=y this reduces {x}. Axion of Union Justifies AUB.	(User Selection Axion) ANB= {xEA: xEB}	
$(\forall A)(\forall B)(\exists S)(\forall x)((x\in S) \leftarrow \forall (x\in A \lor x\in B))$	= { subsets of A }	
$(\forall A)(\exists B)(\forall y)[(y \subseteq A) \rightarrow (y \in B)]$		· · · · · ·
$(\forall A)(\exists B)(\forall y)[(\forall z)(z \in y \rightarrow z \in A) \rightarrow (g \in B)]$	· · · · · · · · · · · · · · · · · · ·	· · · · · ·

Arion of Infinity
Justifies w = {0,1,2,3,4,} where 0= 10, 1=30, 2= 30, 12, 3 = 30, 1,22,
$(\exists s) [(\emptyset \in S) \land (\forall x \in S)(x \lor \{x\} \in S)]$
$(Z \rightarrow S) (\forall x) (\neg (x \in Z)) \land (Z \rightarrow S))$
Axion of Choice For any collection of nonempty sets, there exists a function assigning to each AEC an element of A.
A relation between A and B is a subset of AxB; a function A->B is a relation
Satisfying $(a,b), (a,b') \in A \times B \longrightarrow b = b'$
$A \times B = \{(a,b) : a \in A, b \in B \}$
Kuratowski (a,6) = { {a}, {a,63 }.
Wyo Courses (Moth 5590-01) ~ Calendar ~ April 2023
Calendar Feed (ink (below)
ZEC Axioms. Models? How about the entire Von Neumann universe V= UV, ? No, this is not a set; is a proper class what about V: for some "afficiently large" ordinal v?

This requires that d be inaccessible i.e.	
(1) $ \alpha > \omega = 4$, (α is uncountable)	
(2) IF $ \lambda < \alpha $ then $2^{\prime\prime} < \alpha $	
(3) If $\{\lambda_{\beta}: \beta \in B\}$ is a collection of smaller ordinals $ \lambda_{\beta} < \kappa $ for	all
$\beta \in B$, $ \beta < \alpha $ then $\sup_{\alpha \in B} \lambda_{\beta} < \alpha $	
V satisfies (2), (3) but not (1). RES	
Ordinals: sets which are well-ordered by 'E'. They are the canonical ex	angles
$\emptyset = 0$	
$\{\emptyset\} = 1 = \{0\}$	
$\{ \emptyset, \{ \emptyset \} \} = 2 = \{ 0, 1 \} = 1 \cup \{ 1 \}$	
3= So1,23 DEIE2 3= 20 523 etc.	
	3
W- 80,1,2,3, S Every ordinal is either a such	Lessor
or a limit ordinal.	
$w + 2 = w + v \forall \forall \forall \forall \forall \forall \forall \forall \forall $	

Cavdi- These	nal num	bers an	e the n (as a	proper en	belass of the	ordinals :	· · · · · · · · · · · ·	· · · · ·
	Indinals	O _I I _V	2, 3,	, W, W+1	ι,, ω, _ι	·· , w ₂ , ···	/ cJ_3 1 · · · · · · · · · · · · · · · · · ·	
	Cardinals	Ø, I,	2, 3,	K.	8	"	×, ··· ×	· · · · ·
 	wt(=	80,1,2	, ³ , ³ Ú	1 { w}	· · · · · · · · · · ·	· · · · · · ·	· · · · · · · · · · · ·	
	satisfies	(1) (3) but not	F(2) (n	= 1,2,3,)			
$\omega = \omega_{\rm s} + \omega_{\rm s}$	and the second second				and the factor of the second second			
i i vî i	satisfi	es (1) ,	(2) bo	st not (3).				
Vww Wo car	satisfi	es (1), ne in	(2) be ZFC 4Ce	nt not (3). 2t inaccess	sible cardinals	exist (mless ZFC is int	onsistert)
Vww We can Usually	satisfi nust pro	es (1), ne in adds an	(2) las ZFC 4Ca extra	at not (3). at inaccess assumption	sible cardinals ("large cardinal	exist (axion")	onless ZFC is int to justify	ionsistat). having
Vww We can Usually an inac	satisfi nunot pro one ccessible	es (1), e in adds an cordinal	(2) loc ZFC 4Co extra).	at not (3).	sible cardinals ("large ardinal	exist (axion")	omless ZFC is int to justify	nonsistat) having
Vww We can Usually an inac	satisfi nuot pro one ccessible	es (1), re in adds an corolinal	(2) loc ZFC 4ho extra).	nt not (3). at inaccess assumption	sible cardinals ("large cardinal	exist (axion")	ouless ZFC is ind to justify	ionsistert) having
Vww We can Usually an inac	satisfi nnot pro one ccessible	es (1), re in adds an corolinal	(2) lao ZFC 4Go extra).	at not (3).	sible cardinals ("large cardinal	exist (axion")	omless ZFC is int to justify	haviag
Vww We can Usually an inac	satisfi nuot pro one ccessible	es (1), re in adds an cordinal	(2) loo ZFC 4Go extra).	nt not (3). 2t inaccess assumption	sible cardinals ("large cardinal	ercist (axion")	omless ZFC is int to justify	norsistat) having
Vww We can Usually an inac	satisfi nnot pro one ccessible	es (1), ne in adds an cordinal	(z) lao ZFC 4Co extra).	at not (3).	sible cardinals ("large ardinal	exist (axion")	omless ZFC is int to justify	nongistat) having
Vww We can Usually an inac	satisfi unot pro one ccessible	es (1), re in adds an corolinal	(2) lao ZFC 4Go extra	at not (3).	sible cardinals ("large cardinal	exist (axion")	omless ZFC is int to justify	haviag
Vww We can Usually an inac	satisfi nunot pro one ccessible	es (1), re in adds an cordinal	(2) loo ZFC 4Go extra),	at not (3).	sible cardinals ("large cardinal	ercist (axion")	omless ZFC is int to justify	nonsistat) having
Vww We can Usually an inac	satisfi unot pro one ccessible	es (1), re in adds an corolinal	(z) lao ZFC 4Co extra).	at not (3).	sible cardinals ("large cardinal	exist (mless ZFC is in to justify	nongistat). having

Transfinte Induction / Recursion Given a collection of Statements S (a E A where A is well-ordered) we can ask for a proof of all these statements by transfinite induction. To prove S for all a EA, it is sufficient to prove the following inductive step: Whenever Sp holds for all B<q, Sa also holds. Why? Assuming the inductive step holds for all de A, we must show So holds for all de A, we must show So holds for all de A. This is proved by contradiction. If So fails for at least one QEA, then B= {XEA: Sx fails } is a nonempty subset of A, so there is a least element BEB. Then Sx holds for all X=B (by minimality of B) So by the inductive step, Sp holds so B & B. Contradiction. Eq. If is possible to partition $X = \mathbb{R}^3 \cdot \{0\}$ ($0 \in \mathbb{R}^3$ is a single point) into Enclidean lines. (Clearly \mathbb{R}^3 can be partitioned into Enclidean lines. Not so obvious for $X = \mathbb{R}^3 \cdot \{0\}$.) Zorn's lemma doesn't give us such a partition (i.e. a maximal set of mutually disjoint lines in X doesn't recessarily core X). EC { lines of R³ contained 151 = 2⁴⁰ in X3 (X | = ; 70. 121 = 2⁴⁰ $|R^3| = 2^{\kappa_0} = |R| = |\chi|.$ LOME & whenever l\$ min 2.