

Trivial examples: Fix $x_0 \in X$. Define $\mu(A) = \begin{cases} 0 & \text{if } \pi_0 \notin A \\ 1 & \text{if } \pi_0 \notin A \end{cases}$. A wassureable cardinal is a cardinal κ which admits a nontrivial countably additive) two-valued massive. Does such a K exist? It so then any larger cardinal satisfies this condition. Given K < K', a nontriviel contably additive two-valued measure on K, lift it to one on K' 1: K-K' injection. Define (for B S K') $\mu'(B) = \mu(i(B)).$ Theorem (Ulam) If there exists a nontrivial countably additive two-valued measure on an incornitable set X then let X be a smallest example. Then X has a montrivial K-additive two-valued measure for all K & IXI. It is K-additive if A measurable cardinal is an uncountable cardinal K having a K-additive two-vialued measure. Do they exist? And who cares? Do they exist? And who cares? So they exist? And who cares? Li So C = 2 dopen = 2° of closed sets Closed = 10° C = 3 closed = 10° C = 3 closed = 10° C = 3 $\mu(\prod A_{k}) = \sum \mu(A_{k})$ for every $\alpha \in I$ $\alpha \in I$ $(1 | < \kappa$ sets $(A_{\alpha} \leq X)$ $[o,i] = \bigcup \{k\}$ · d€[o, i]

Projective Hierarchy Ξ'_n , Π'_n , $\Delta'_n = \Xi'_n \cap \Pi'_n$
$\begin{array}{c} \underline{A}_{0}^{\prime} \subset \underline{\Xi}_{1}^{\prime} \\ \underline{A}_{0}^{\prime} = \underline{\Xi}_{1}^{\prime} \cap \underline{\Xi}_{1}^{\prime} \subset \underline{\Xi}_{2}^{\prime} \\ \end{array}$ Borel sets $\Pi_{1}^{\prime} \subset \underline{\Pi}_{2}^{\prime} \subset \underline{\Xi}_{2}^{\prime} \cap \underline{\Pi}_{2}^{\prime} \sqcup \underline{\Pi}_{2}^{\prime} \subset \underline{\Xi}_{2}^{\prime} \cap \underline{\Pi}_{2}^{\prime} \sqcup \underline{\Pi}_{2}^{\prime} \subseteq \underline{\Pi}_{2}^{\prime} \subset \underline{\Xi}_{2}^{\prime} \cap \underline{\Pi}_{2}^{\prime} \sqcup \underline{\Pi}_{2}^{\prime} \amalg \underline{\Pi}_{2}^{\prime} \sqcup \underline{\Pi}_{2}^{\prime} \amalg \underline{\Pi}_{2}^{\prime} \underline{\Pi}_{2}^{\prime} \amalg \underline{\Pi}_{2}^{\prime} \amalg \underline{\Pi}_{2}^{\prime} \amalg \underline{\Pi}_{2}^{\prime} \amalg \underline{\Pi}$
E' = Eanalytic sets in X } A \ E' i \ A \ is a continuous image of a Borel set under f: Y -> X
II, = { coanalytic sets in X} = { complements of analytic sets } Y Polish = pace)
Z' = { continuous images of coanalytic sets }
If there exist measurable cardinals, then every Z'- set is labesgue measureable.
Coming to: an application a large cardinal to the finite world. see Non-associative algebra: Keis, Quandles, Racks, Shelves, (Sam Nolson, Quandles A kei is a set S with a binary operation & satisfying: for all K, y, z e S, (i) X D X = X (every element is idempotent)
A kei is a set S with a binary operation & satisfying : for all right of , (i) 202 = x (every element is idempotent)
(2) $(X \land Y) \land Z = (X \land Z) \land (Y \land Z)$ $(D \land S \land Q \land C \land C$
If (S, A) satisfies (3), IT is a shelt of a shelt of an offer (1) and (3), It is a race.
If (S, A) satisfies (3) , it is a shelf. If it satisfies (1) and (3) , it is a rack. (or satisfies (1) , (3) and $(2')$ it is a quadle. (2'): For all y, the map $S \rightarrow S$, $x \mapsto x \triangleright y$ is injective.

(i) X D X = X The kei axioms are equivalent to the
(i) $X \ D \ X = X$ (i) $X \ $
(n)
Examples: Fix c e R and define XDy = cx + (1-c)y for X, y e R. This gives a rack (satisfying (1), (3)). It's a kei if c= ±1. (?)
(satisfying (1), (3)). It's a keep of a line of the line of the
More generally let V he a vector space and REGL(V) invertible linear transformation.
More generally let V ke a vector space and $R \in GL(V)$ invertible linear transformation. For $u, v \in V$, $u \triangleright v = Ru + (I-R)v$. This is an Alexander quandle. (sometimes a
Example Let G be a group (multiplicative). Fix n \in Z. For abe G abb = bab" (n-fold conjugation of a by b). This is a rack,
Sometimes a quandle $T = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $T = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ $T = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$
Sometimes a quandle. Example The Braid group B_n $T = \begin{cases} T = \\ $
e_{2} , in B_{2} , (23) ,
$\sigma S_n = Sym\{1,2,\dots,n\}$
$ S_n = n$
$P_n \rightarrow 77 S_n$ epimorphism
$(\mathcal{B}_{\alpha}) = \mathcal{H}_{\alpha}$

Kei colorings of braids Given a braid of B. and a Kei (K, D) we color the arcs in a braid diagram of o (i.e. lakel the arcs using elements of K) such that This is the same as requiring that if we label the tops of the u strands, the labels on the bottom are independent of the choice of diagram used for the braid of $\left| \leftrightarrow \right\rangle$) X ⊳ y z yoz (xdy)dz 402 (x02) D (4D2)

A right shelf satisfies right-distributivity (XDY)DZ = (XDZ)D (YDZ) left left XD (YDZ) = (XDY)D (XDZ)	
$\frac{1}{100} = (x Dy) P(x Dz) = (x Dy) P(x Dz)$	•
	0
	t
A = SIZ 3 ···· N= " (integers much N) Now Us written as N mod N	•
Theorem There is a unique left shelf on A. satisfying a DI = a+1. for all a = A	n *
Eq. $n=2$, $N=4$, $A=\{1,2,3,4\}=$ integers mod 4	•
$\frac{P_{1}}{P_{1}} = \frac{2}{3} \frac{4}{4} + \frac{4}{4} = \frac{4}{4} + \frac{2}{4} = \frac{4}{4} + \frac{4}{4} + \frac{4}{4} \frac{4}{4} $	
$\frac{1}{2} \left(\begin{array}{c} 2 \\ 4 \\ 3 \\ 4 \\ 3 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4 \\ 4$	
	•
Fact: The left-distributive 2 D2 = 2 D (1 D1) = (2 D1) D (2 D1) = 3 D3 = 4	
$\log 10^{10} \log 10^{10} (200) = 203 = 20(201) = (202) D(201) = 403 = 3$	
although we haven't 224 = 20 (301) = (205) 0 (201) = 313 = 1	•
checked this here. 102 = 10(101) - (101) P(101) = 202 -7	
[P3 = [P(2P1) = (1P2) P(1P1) = 4P2 = 2	

 $\mathbf{2}$ A_0 $\mathbf{2}$ A_2 $\mathbf{2}$ $\mathbf{2}$ $\mathbf{5}$ Figure 2: Multiplication tables for the first four Laver tables two As n > 00 the period of the first row of the table -> 00 . conjecture holds if there exists a Laver cardinal (a certain kind of inal). No one knows how to prove this in ZFC. Conjecture large have an inverse system of left shelves We

Let X be any set and ht M = { injective maps X -> X }. Then M is a monoith under composition. (A group iff X is finite). Let A be a set of sentences over some language L, and let M, N = A (models of A i.e. L-structures which satisfy ell eq. A: axions for a ring. the sentences in A) $Z, Q \neq A$ and Z is a submodel of Q (there is a 1-to-1 map $Z \xrightarrow{l} Q$ preserving the operations. But Z is not elementarily embedded in Q because there are sentences ϕ over L (elementary embedded; such that $Z \neq \phi$, $Q \neq \neg \phi$ (or the other way around) e.g. eg. $\phi: (\exists x) (\forall y) (\neg (y+g=x))$. is an elementary embedding if I is injective We say $L: M \rightarrow N$ $(M, N \models A)$ where l(M) is <u>elementarily</u> equivalent to N: For all ϕ , $l(M) \neq \phi$ iff $N \neq \phi$. and for every sentence \$, 1(M) < N submodel A portion of the Koch Snowlake curve illustrating self-similarity.

why is > a left shelf?	
$((f \triangleright g) \triangleright (f \triangleright h))(x)$	Fa
= $(f D (g D h))(x)$ Check three cases	fg(x)
If $x \in fg(X)$ then $\pi = fg(g)$ so	
$(g \triangleright h)(x) =$	
1: $V_{k} \rightarrow V_{k}$ is an elementary embedding but It generates a shelf under "D". This is the free $f_{i} = \{1, 0, (Di) Di, 0 > (1 Di), \dots \}$ The are distinct except when required by the left shelf f_{i} is a countably infinite (eff shelf; moreover f_{i}	t not surjective. se shelf on one generator \overline{f}_{i} se combinations of ι under P axion e.g. $(\iota \triangleright \iota) \triangleright (\iota \triangleright \iota) = \iota \triangleright (\iota \triangleright \iota)$ $= \lim_{k \to 0} A_{ik}$

Let X be an infinite set. A fitter on X is a collection I of subsets of X such that
(i) Ø∉F, X ∈ F (Sets in Fraze large subsets of X.)
(ii) If AEF and ASBEX then BEF.
(iii) If A A'EF the A O A'EF.
By Foru's Lemma, every F fitter extends to an ultrafitter U? on X which is a filter satisfying
satisfying
civ) for all ASX, either A or X-A is in U.
Il gives a two-valued finitely additive probability measure on X.
To get a monprincipal utrafittor on X, ic start with the Firechet fitter consisting of all
cofinite subsets of X' (complements of finite subsets of X) and take U 27 a maximal
To get a nonprincipal utrafitter on X, ic start with the Fréchet fitter consisting of all cofinite subsets of X (complements of finite subsets of X) and take UZF a maximal fitter containing F. U is nonprincipal: U contains no finite sets.
We take I to be a nonprincipal uttratities on w = {0,1,2,3, } and consider the ring
$\mathbb{R}^{\omega} = \{(a_0, a_1, a_2, a_3, \dots): a_i \in \mathbb{R}\}$ with coordination operations. \mathbb{R}^{ω} is a commutative
ring with identity, not a field; eg. $(1,0,1,0,)(0,1,0,1,) = (0,0,0,0,) = 0 \in \mathbb{R}^{\mathbb{N}}$.
Nor identify two sequences a = (a, a, az,), b = (bo, b, bz,) if they agree almost everywhere
with respect to \mathcal{U} i.e. if $\{i \in \omega : q_i = b_i\} \in \mathcal{U}$.
In the case a= (1,0,1,0,1,0) we have a:= 0 whenever if 9(357?: b:= 0 whenever if \$0,246
$b = (0, (0, 0, 1, 0, 1,)) \text{If } \{1, 3, 5, 7,, 3 \in \mathcal{U} \ \text{then} \ a \sim (0, 0, 0, 0, 0,) \ and \ b \sim (1, 1, 1, 1, 1,) \text{if } \{0, 2, 4, 6,, 3 \in \mathcal{U} \ \text{then} \ a \sim (1, 1, 1, 1,) \ and \ b \sim (0, 0, 0, 0, 0,).$
If {0,2,4,6,3=91 then a~ (1,1,1,1,1,) and b~ (0,0,0,0,0,).

Identify two sequences in R whenever key agree almost everywhere w.r.t. U.
Identify two sequences in \mathbb{R}^{ω} whenever they agree almost everywhere w.r.t. U. Then we get a quotient ring $\mathbb{R}^{\omega}/\omega = *\mathbb{R}$ denoted \mathbb{R} in the handout.
The is 10 fill waster and and and a huser hundle
"R has the same first order theory (an ordered field and it's a eal closed field, *R has the same first order theory (an ordered field and it's a eal closed field, e.g. every poly f(x) ∈ "R [x] has a root in "R). In fact we have an elementary embedding of R in "R. The main difference between R and "R is that R has no infinite or infinitesmal elements best "R does.
It has the same this of and degree , then I but we have an elementary
e.g. every poly f(x) E /R [x] has a root in /R). In 1900
embedding of R in R. The main difference between IR and IR is that IR has no
infinite or infinitesmal dements best * IR does.
The Archimedean property says that if a>0 then a+a+a++a = aa>1 for some n.
$(\forall a)(a>p \rightarrow (a+a>) \lor a+a+a>! \lor a+a+a>! \lor \dots)$
This property is not expressible in the first order theory of fields.
R satisfies this property, *R does not.
E a lilling Por no to equivalence mad Il fationes an infinites ral
Eq. $\varepsilon = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites ad
Eq. $\varepsilon = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites ad
Eq. $\varepsilon = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites ad
Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites and in * \mathbb{R} . $n\mathcal{E} = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4}, \cdots) \in \mathbb{R}^{n}$, $n\mathcal{E} < 1$ since this holds for oil but the first n terms of
Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites and in * \mathbb{R} . $n\mathcal{E} = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4}, \cdots) \in \mathbb{R}^{n}$, $n\mathcal{E} < 1$ since this holds for oil but the first n terms of
Eq. $\varepsilon = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites ad
Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites and in * \mathbb{R} . $n\mathcal{E} = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4}, \cdots) \in \mathbb{R}^{n}$, $n\mathcal{E} < 1$ since this holds for oil but the first n terms of
Eq. $\mathcal{E} = (1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \cdots) \in \mathbb{R}^{n}$, up to equivalence mod \mathcal{U} , defines an infinites and in * \mathbb{R} . $n\mathcal{E} = (n, \frac{n}{2}, \frac{n}{3}, \frac{n}{4}, \cdots) \in \mathbb{R}^{n}$, $n\mathcal{E} < 1$ since this holds for oil but the first n terms of

Every structureMhas a enlargement "M. first-orden	10.		llon la
Every structureMhas a enlargement "M. Kos' Theorem IF Mo, M, M, = A (statements over a language over L)	then	The	wringrout
$\left(\frac{\prod M_{i}}{i \epsilon \omega}\right)/g_{\mathcal{U}} \neq A$			
Eq. A = axions for fields, M:= R for all i. IT M: = {(m, m, mz,	· .) 	m;€	M; 5.
Eq. L = language of a single binary relation '~' A = axions for ordinary graphs of degree 3 A model of A [F=A, is an ordinary graph of degree 3. For each it w, take [i = A eg. [i = A, [i = A], [i =		• • •	· · · · · ·
A model of A TFA, is an ordinary graph of degree 3.		• • •	
For each it w, take $\Gamma_i \neq A$ eg. $\Gamma_0 = \int_0^{\infty} \Gamma_i = \int_$			
$\prod_{i \in \mathcal{W}} \left[\left\{ \begin{array}{c} x \\ y \\ z \\ \end{array} \right\} \left\{ \left\{ \left\{ x \\ y \\ z \\ \end{array} \right\} \right\} \left\{ \left\{ \left\{ \left\{ v \\ z \\ \end{array} \right\} \right\} \left\{ \left\{ \left\{ v \\ z \\ \end{array} \right\} \right\} \right\} \left\{ \left\{ \left\{ v \\ z \\ \end{array} \right\} \right\} \left\{ \left\{ \left\{ v \\ z \\ \end{array} \right\} \right\} \right\} \left\{ \left\{ \left\{ v \\ z \\ \end{array} \right\} \right\} \left\{ \left\{ \left\{ v \\ z \\ \end{array} \right\} \right\} \right\} \left\{ \left\{ \left\{ v \\ z \\ \end{array} \right\} \right\} \left\{ \left\{ v \\ z \\ z \\ \end{array} \right\} \right\} \left\{ \left\{ v \\ z \\ z \\ \end{array} \right\} \left\{ \left\{ v \\ z \\ z \\ \end{array} \right\} \right\} \left\{ \left\{ v \\ z \\ z \\ z \\ z \\ \end{array} \right\} \left\{ \left\{ v \\ z \\$			
I a nonprincipal uttrafitter on w i.e. v. is a vertex in	$\mathcal{V}_{\mathcal{O}}(\mathbf{r}) = \mathbf{r}$		· · · · ·
Now (ITT:)/21 is the set of equiv. classes of sequences V= (Vo, V1, V2)	, .		
TE V w E (IT F.) (91 then V ~ w iff V. ~ W; for almost all i i.e.	~ {i€w	• • • •	~w} € U.
This graph T has degree 3. If T: has order < n for some n then T and < < n When ? Let Q be the first-order statement That Ti has	is a at w	grad nost	n of n vertices;
This graph Γ has degree 3. If Γ ; has order $\leq n$ for some n then Γ order $\leq n$. Why? Let θ be the first-order statement that Γ_i has since $\Gamma_i \neq \theta$, $\Gamma := (\prod_{i \in W} \Gamma_i)/q_i \neq \theta$.		· · ·	· · · · ·

You can take the "*" operation applied to any standard mathematical object, e.g.
$a^{*} + b^{*} = (a^{*} - b^{*}) + b^{*} = $
If $f: \mathbb{R} \to \mathbb{R}$, then $\stackrel{*}{f}: \stackrel{*}{\mathbb{R}} \to \stackrel{*}{\mathbb{R}} \stackrel{\text{enlarges}}{(extends)} \stackrel{\text{then }}{=} \stackrel{*}{\mathbb{R}} \stackrel{(\alpha)}{(\alpha, \alpha, \alpha$
$\alpha \in \mathbb{R}^{*}$? α is represented by $(a_{0}, q_{1}, q_{2}, \cdots) \in \mathbb{R}$.
* $f(\alpha)$ is represented by $(f(q_0), f(q_1), f(q_2), \dots) \in \mathbb{R}^{\mathcal{N}}$. The equiv. class of this sequence is well-defined in * \mathbb{R} .
Seguerce is well-defined in TR.
Suppose f: R-> R is différentiable. Classically,
Suppose $f: \mathbb{R} \to \mathbb{R}$ is differentiable. Classically, $f'(\alpha) = \lim_{t \to 0} \frac{f(\alpha+t) - f(\alpha)}{t}$.
The nonstandard approach: $f'(a) = st \left[\frac{f(a+\epsilon) - f(\epsilon)}{\epsilon} \right]$ where ϵ is an infinitesual
st: bounded hyperroals to reals. "st(a)" is the standard part of a, i.e. the unique real closest to a (infinitely close). "R has the order topology which is not metrizable and not separable. The fact the order topology which is not metrizable and not separable. Transfords can be similarly defined in a nonstandard way: if f is lebesgue
"ID has the order topology which is not netrizable and not separable.
Integrals can be similarly defined in a nonstandard way: if f is lebesgue

integrable then $\int_{a}^{b} f(t) dt = St \left[\frac{1}{N} \sum_{i=1}^{N} f(a + i\Delta x) \Delta x \right]$ where N is an unbounded hypernatural number Ax= 6-9 Hypernatural numbers *N = (IT N)/ql $N = \{1, 2, 3, \dots, \}$. Sequences $(n_0, u_1, n_2, \dots) \in \mathbb{N}^{\omega}$ mod \mathcal{U} gives \mathbb{N} . NC*N *IN looks like " shifted copies of 2" $|*N| = |*R| = |R| = 2^{K_{\circ}}$ $2^{H_0} \leq (M) \leq (N)^{\omega} = H_0^{H_0} = 2^{H_0}$ Given $\alpha \in (0,1)$ (real) consider the sequence $u_{\alpha} = (\lceil \alpha \rceil, \lceil 2\alpha \rceil, \lceil 3\alpha \rceil, \lceil 4\alpha \rceil, \cdots)$ If $\alpha < \beta$ in (0,1) then $u_{\alpha} < u_{\beta}$ $u_{\alpha} \neq u_{\beta}$ mod U.

An example of an elementary statement about IR that has a (possible) shorter nonstandard proof than standard proof: Theorem (Sierpinski) IF a, ..., ak, b are positive reals then $\left\{ \left\{ (n_{1}, \dots, n_{k}) \in \mathbb{N}^{k} : \frac{q_{1}}{n_{1}} + \frac{q_{2}}{n_{2}} + \dots + \frac{q_{k}}{n_{k}} = \int_{0}^{k} \right\}$ This statement was proved using elementary methods by Sierpinski. A later nonstandard proof by Rose: Suppose $S = \{(n_1, \dots, n_k) \in \mathbb{N}^k : \frac{q_1}{n_1} + \dots + \frac{q_k}{n_k} = b\}$ is infinite. Then *S contains a solution (n, ..., n,) where not all n \in N (some n;'s are unbounded); l≤r≤n. There Say $n_1, \dots, n_r \in \mathbb{N}^* \setminus \mathbb{N}$; $n_{r+r_1}, \dots, n_k \in \mathbb{N}$; $\frac{q_r}{n_1} + \cdots + \frac{q_r}{n_r} = b - \frac{q_{r+r}}{n_{r+r}} - \cdots - \frac{q_k}{n_k}$ Contradiction. positive infinitesual ER (bounded)

We have first-order axions for group theory. Axions for the class of abelian groups: • axions of group theory • (\frac{1}{x})(\frac{1}{y})(xy=yx) Axions for class of nonabelian groms · axions for group theory • (∃x)(∃y)(xy≠yx), There is no first-order axiomateration of the class of cyclic groups. Cyclic: $(\exists g)(\forall x)(\exists y \in f(x = g^{n}))$ Not permissible in first order group theory. If there were a list of axions A for the theory of cyclic groups then (TT Citz)/U is a group of order 2th, not cyclic. Cyclic of order 2 is not cyclic. $(C_{X}C_{3}\times C_{q}\times C_{5}\times \cdots)/q_{\ell}$

A shorter argument that the class of cyclic groups is not first order axionisticable: Suppose A is a collection of statements in first order group theory such that $G \neq A$ iff G is a cyclic groups. There exists an infinite model (additive Z) so by the Upward Lowenbeim-Skolem theorem, there exist models of arbitrarily large cardinality. Take group uncountable model $G \neq A$; then G is not cyclic. Let A be a set of statements in graph theory such that $\Gamma \models A$ iff Γ is a graph of degree 2. Note: this equivalent to saying Γ is a disjoint min of aycles $\Delta \Box \langle \mathcal{L} \rangle$ + + + + Let A be the axions for field theory (the language $0, 1, +, -, \times$). $F_{p} \neq A$ is the field of prime order p_{j} $F = algebraic closure of <math>F_{p}$ Let $F = (\Pi \overline{F}_p)/q = (\overline{F}_z \times \overline{F}_z \times \overline{F}$ Since $\overline{F_p} \neq A$ F is a field. What is it? F $\subseteq C$.

F = (IT Fp)/U is a field of characteristic zero. It is algebraically closed. (Each IF, is alg. closed as we described in the first month.) The theory of alg. closed fields of characteristic zero is incomitably categorical. $|F| = 2^{46}$ (look back four pages) so $F \cong C$. Now consider $F = (TTF_p)/qu = (f_z \times f_z \times f_z \times f_q \times f_r \times \dots)/ql$ This is a field. It is a subfield of C (up to isomorphism) It has characteristic zero. $|F| = 2^{K_0}$ $F \notin C$ since F has irreducible poly's of every degree. (for every $n \ge 1$, there exists a poly. $f(x) \in F[x]$ of degree n which is irreducible. But so that, Q also has this property.) R[x] has irred. poly's of degree 2 but they all give rise to C: R has a unique extension field of degree 2. Q has infinitely many extension fields of degree 2. If has a unique extension of each degree n≥1. F is an ancountable field of char. O having a unique extension field of each degree n≥1.

Take a subset $S \leq N^{\omega} = \{(n_0, n_1, n_2, ...\}: n_i \in N\}$. Two players, Alice and Bob, take turns picking elements of $N = 91, 2, 3, 4, ... \}$ starting with Alice, resulting in a play x=(a, b, a, b, a, b, ...) \in N^W. If x e S, then A wins. If x e N^W-S, B wins. Eq. S is the set of eventually constant sequences. This has a winning strategy for Bob. Eq. S is the set of eventually periodic sequences. Bob's advantage. Eq. S is any comptable collection of sequences i.e. S = N^w, ISI = N. Bob has a winning strategy. Emimerate S = {S, S, S, S, ... }. On turn j, Bob chooses any n = N which differs from the 2j-indexed term in Sj. Eq. S is the set of sequences having no '3,1,4,1,5,9' as subsequence. Africe has a winning strategy. stategy. Eq. S is the set of 'universal' sequences in N° (sequences containing every finite sequence of notwal numbers appears as a consecutive subsequence). Bob can play 2,2,2,... to win. A strategy is a function: N° > N. A strategy for Alice (or Bob) is a winning strategy finite strings (40, 60, ...) if the player in grestian is guaranteed to with finite strings (40, 60, ...) if they follow that strategy. Axion of Determinacy (AD): for every SGIN, either Alice or Bolo has a winning strategy for the game G. Every open game is determined : either Alice or Bob has a winning Theorem (Gale, Stewart) Strategy.

An If The	lage basic ope S <u>S</u> co fini exan	en si CN ndifi	et w	is s of that	en en, e c	a # 5≤	rbit Ren N	Gran w i	ý s	curie 3 d open	tetern n	of la nined rean	esia 1. 5 -	e ope Kat	en se	ts. X w	(x ₀ ,x	, 9	, x P	ays)	is Afti	б (х а се	is of o, Ti, Ka, bessi are are	rom e <u>e</u> dete	in n	(nt) LTA	ed	€ Æ	N ?	• •
··ie		2	307	766	543	74 .	50		one	e n	• •	30	1766	4394 Nut 1	×	 	· · · · · · · · · · · · · · · · · · ·	-	 	1 N,~	e 1	N		•	• •	· ·	•	•	••••	•••	•	•••
												_				-		к	-													
Alse	is s	rf 1	is S S	ope	n	bu is	t d	not ased		losed Lie	: . G	its s	; 0	o nyle Moi	re g	t is caerd	no elly,	, . T	f S	~ . 3 <i>C</i>	R)'	م	3	a	Borel	2 6	et,	7	the	J	ene (Sç
Alse	is s deter	rf 1	is S S	ope	n	bui is	t d	not osed		losed -Lie	G	its s	; 0	Mot	e g	t is cnerc	no elly,	 	F S	~ · · 3 <i>C</i>	¢V'	د نهر د	3	A	Borel	2 4	ek,	7	He.	J	me (SS
Alse		rf 1	is S S	ope	n	; ;;	t d	not		losed -Lie	. G	chi s	; 0	o myle Mot	e g	t is cnerc	no elly,	, F	f S		¢V'	- - - - - - -	Š	A	Borel	2 c	et,	7		J	eml (55
Alse		rf 1	is S S	ope	n	bui is	t d	not		losed -Ce	G	zhi s	; 0	omple Mot	e g	Cnerco	no ally,	, F	f S	s S C S C S C S C S C S C S C S C S C S	¢V'		3	4 4 4	Bore	2 4		7	He.	J	eme (55
Alse		rf 1	is S S	ope	n	bui is	t C	not		losed -Ce	G	zh: s	; 0	o mple Mo	e g	t is Cnerco	no ally,		F S	ŝ	¢V'		8	a a 	Bore	2 c	et,	7		J	eme (ε ς
Alse		rf 1	is S S	ope	n	bui is				<u>f</u>		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·	•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	
Alse		rf 1	is S S	ope	n	<i>b</i> и З				<u>f</u>		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•	· · ·	•	Bored	· · ·	•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	
Alse		rf 1	is S S	ope	n	bui is				<u>f</u>		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·	•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	
Alse		rf 1	is S S	ope	n	6. . is				<u>f</u>		· · · · · · · · · · · · · · · · · · ·	•	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		· · ·	•	· · · · · · · · · · · · · · · · · · ·	•	· · ·	•	· · ·	•	· · · · · · · · · · · · · · · · · · ·	· · ·	•	•	· · ·	· · · · · · · · · · · · · · · · · · ·	•	

Consider $S = \{(a_0, b_0, a_1, b_1, \dots) : a_0 \in \mathbb{N} \text{ arbitrary}, b_n \text{ old}, a_{n+1} + 1 = b_n > a_n \text{ for all } n \ge 1 \}$	
Alice has a asimiling strategy. To D as to a, b, az be az	
Typical play: (1, 48, 47, 46, 45, 44, 43,, 3, 2, 1)	
Alice has won', this game has value 0 ("0 moves for Alice to via).	
(1, 48, 47,, 3,2) has value 0.	
(1, 48, 47,, 3,2) has value 0. (1, 48, 47,, 4,3) has value 1.	
((48, 47,, 5,4))	• • • • •
(1, 48, 47) has value 22.	
(r, 48) (r) has value $w = \sup \{0, 12, \dots\}$	
(1)	
() has value w+1.	
In general, for every position of the game in which Alice has a winning strategy, we a value to that position which is an ordinal. O' means Alice has won already islu I move to reach a position of value O, etc. Some positions will not have any value these are winning positions for Bob.	issign .
a value to that position which is an ordinal. O means there will not have any value	assigned.
I move to reach a position of value 0, etc. some position	
these are winning positions for Dog.	
The value is defined ecursively as follows:	
Case I: It's Bob's turn. Position (90, 60, 9, 61,, 9m), aro.	· · · · · ·
lase I. Is boos to the sup of the values of (90, 60,, 9, 6) for beth Define the value of (90, 60,, 9,) to be the sup of the values of (90, 60,, 9, 6) for beth (If these sequences have values).	

•		a	ee Th a	\$5	I	P	04	sif	io- F	I t ~	's h +	a	A	נו י ג	ice Ve	's li e	ve xi	te st		'n († <i>a</i>	1 my	F	P.	os st	it Sea	ir R Ch	, .	(~ pe	(Q.)	,, ;; ;;{;	5.	, th s	a, a	6 n 0	1 m	L √a	, q v le	al ie	lue	2m- 2 6	ŕ)	(a	, <mark>6</mark>	n ≯ ? / ^C	- 0 ? _{c1}	۶., ۱	•	, 9,	(-,,	ie br	-1	() , '	(9)	if 1		n= 9	e e) //	J	•	•
•	1	И	ora ty	2 P	ic	ner 20	re Iy	ra	d X	ly =	-)	žo,	+	61 3	ka	2	ä	200 (1	チン		ہو بو ر	et	-	X	•	Gev	d		0	e e e	-5	id	len N		g	a	rl	25		et	ē,	и, ,		ed	0	5	3		32		X	بوب - ا	•	•	•	•	•	•	•	•	•	•
•		-	0 10 47		•	ē	ر خ ئ	•	iu ii	n c	4	be ns	بر بر د ز	di sb	en en	t t	2	ار س	? न्त	E K	ZF	-	A (•					•	•											•		•			•	0	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•			0	•	•	•	•		•	•	•	•		•	•	•	1	•	•	•		•	•	•	•	•			•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•	•			•	•	•	•	•		•	•	•	•		•	•			•		•		•	•	•	•	•			•	•	•	•	•		•	•	•		•	•	•	•		•	0	•	0					0	0			•	•	•	•		•
•				•	•	•	•	•		•	•	•	•		•	•		8	•				•	•	•	•				•	•	•	•			•		•	•	•	•		•		•	•	•	•					0	0	•		•		•	•	•	•
•				0	•	•	•	•		•	•	•	•		•	•			•	•			•	•	•	•				•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
				0	•	•	•	•		•	•	•	•		•	•	•	2	•	•			•	•	•	•				•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•
•				0	•	•	•	•		•	•	•	•		•	•	•	2	•	•			•	•	•	•				•	•	•	•	•		•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	0	0	•	•	•	•	•	•	0	•