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Group Theory:an example ofa first order axiomatic system
An informal proofin group theory
#woven If G is a (multiplicative group ofexponents, then G is abelian.

It has exponent n ifgs for all ge 6.7
(Informal proof:Leta,b56. Since abab=(ab)" = 1. multiplying on the leftby "a"and on therightby "b"

gives asbabb:alb, i.e.ba=ab. #
Start with names for variables x,y,t.... (symbols)

Axioms of Grouptheory: special symbols for firstorder logic:5. V, parentheses, v. v,i.3.nfu(x,y),z)=

a(X,plyit)has aconstants:....(3:(VX))(y*1 =x)r(1*X =x)) ↓
ASSOC:(Vx(Fy)(V(z) ((x*y) *z =xA(y+z)) Symbols for functions:1. ... My means m(x,y)
INV:(VX) (7y)((X+y=1)1(y*x =0)) symbols for relations:

We happen toknow some groups including in (cyclic group oforders v), S. (symmetric group ofdegreen), ...
GROUPS =3ID, ASSOC, INV3 =9(Vx) ((*1) =...
Sois a group,

i.e. S, F GROUPS 1Sis a nod ofyouthesetconsisting of our threeaxioms of grouptheoryand

ABEL:(V() (y) (x+y =

y+x)

ABEC.GPS =GROUPSU SABEL3S isa non-abelian group;SABEL;S5# ABELGPS.

A structure has an underlying set ofelements, togetherwith an interpretation ofall the symbols for constants,
functions, and relations.



How do we rewrite our informal proof labove) as a formal proofin first order logic?
2:GROUPSU SEXP23 where EXP2:(0x(x*x =1)
ABE is a theorem in the theory ofgroups ofexponent 2, i.e. 21 ABEL.

Atheorem is a sequence ofsteps 2t π in whichverystepfollowsfrompreviousstepsare logic,
I+

or a rub of inference.2+
: This is a formal (symbolic proof!2 +7

An outline ofa formal proof:2t EXP2 since EXP2 >=

2r (EXpz - (Va)(a+a =1))(A4)9.86

2 r(fa)(a+a =1) Modus Porens (R1) p.86

Ei(Vb)(btb =1)
S F

.(Na)(Vb)((a+b)+(a+b)
=1)

25(Va)(Vb))(a+((a+b)+2a+b)) =a+1)

2t (Va)(Vb)(a+b =b+a)
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0RD3:(5x(5y)(z)7g3((9=x) - (g=y) - (g=z))uf)ANAPSE&ereare atmosttreeelements
ABIL is independent ofGROUPS (you cannoteitherprove or disprove thata general group is

ablian). GROUPS I ABEL and GROUPSH LABEL. This is because CF GROUPS
CIFABEL but STEGROUPS!STHABEL



In an arbitraryfirstorder theory, with axioms I, a statement &is independent of if

SB and EH=8:

Soundness Theorem: If 250 thenI holds in every model of2 i.e. MEP whenever ME2.

completeness theorem:converse holds:If aholds in every model of 5, then itis provable from [i.e.

if MFG whenever ME, then 5+8.
-utAssumeis consist

So:O is independent of iff there are models of 1 in which aholds, and models ofAin which

&fails.

& is consistent if we cannotprove a contradiction from 2, i.e. [# (8n 28) for some .

Equivalently, I is consistent ifit has a model.

Eg. ABEL is independent of GROUPS.

ORD3--.-...,

GROUPS is consistent.

GROUPS USORD33 is consistent since ithas a model. In fact ithas a unique
the cyclic group C

oforder 3. The group(s (or its theory) is amodelto isomorphism:

GROUPS is notcategorial. (There are models, butnota ringwe model.

An alternative toINV:(Vx) (7y) ((x*y =1) 1 (y*X
= 1)) is toadd a function symbol ((.) tothelanguage

We already have a binaryfunction symbolnamely (vx)((x *v(x) =1)x(i(x)*x =1)) M(.,.),u(x,y)=xy
Atheorem of is a statementthat can be proved from. A proof is a sequence ofstatements

such....

The they ofE is Th12):statements provable from51: theorems of 13.


