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Trivial examples:Fix xot XinconPale M(A)= Si ***.
Amerable carical is acardinal k

&

which admitsa nontrivial additive dwo-valued measure.
-

Does such an I exist? If so thenany larges cardinal
satisfies this condition.

Given K, M
nontrivial contably additive two-valued measure on K, liftit toone

ank 1:K-Kinjection. Define ( for B = K')

(B) =M( ()).

trem (Ulam) If theseexists a
nontrivial countably additive two-valued measure on an

uncountable set X then let i be a smallest example. Then Ihad

a
nontrivial additive two-valued

measure for all KIX1.

mis k-additive it

A measurable cardinal is an uncountable
cardinal I having a additive two-valuedmeasure. u)(x)

=[mAa) oreinengthe
at I

is they exist? And who cares? TIK K sets

able unions

I
P ofclosed sets

10,1 =W 5x3
(Aa[X).

&o C

, sente 1s ...
24/0,1]

&L &
22

otble intersections
ofopen sets



DiveHehy In, In, I'mEi II'm

. Ein! Ein
Borel sets? It ~II.

At I, iftA is a cantinuous image
ofa Bora

E. =Sanalytic sets in x3 set under 7: Y- X
If continuous. Y Polish space)It' =9coanalytic sets in XY:[complements of analytic sets

= E continuous images of coanalytic sets?

If there exist measurable cardinals, thenevery - setis lebesque measureable.

Coming to:an application a large cardinal tothefinite
world. see

Non-associative algebra:Keis, Quandles, Racks, shelves.... (Sam Nelson, Quand(es)

A bei is a set S with a binary operation is satisfying:forall x,y,tts,
(i) XIX =x Levery element is idempotent)
12) (xDy)xy =x ( xr xxy is involutory)
(3)(xxy)x.z =(xDz)4(ybz) I's"isright-distributive over itself)

If) (S,5) satisfies,editthetote
itsatisfies (i) and (9), it is a rack.

-

If (S,0) satisfies (1), (3) and 12's itis ame
(2'):For ally, the map 5-), xxxxy is injective.



(i) XIX =x

the kei axious are equivalent to the
(2)(xxy)xy =x Reidemeister moves I, II, III.
(3)(xxy)x.z =(xDz)4(ybz)

for x,yt R.
This gives a rack

EsYadne??
More generally bet V be a vector space and REGLV) invertible linear transformation.

For n,reX, UD=Rut(I-R)Y. This is an Alexanders quandle. (sometimes a

keil

Example LetG be a group (multiplicative). Fix net.

For ab-G, a *B-bab" (nfold conjugation ofa by b). This is a rack,

sometimes a quardle 123

eg.
in B3, !Example The Braid gray B. =

osireeiSu =Sym51,2, ... 43
ISn1=n!

Bu-S epimorphism
/Bu) =No.



Kingofbraids
Given a braid ofB. and a kei (K,1) we color the arcs in a braid diagram ofa
li.e,label thearcs using elementsofK) such that

b
bia

This is the same as requiring that if we label thetops
ofthea strands, the

X y
x y

labels on thebuttondirge independentofthe

changiograedeeee
e

Yibx !I YDes ↳

(xxy)by 3 X y

-O
=X



Anight shelf satisfies rightdistributivity (PET=E
⑰ (K,x) is left-distributive th(K,1) is right-distribution where

xx y =yDX Aranspose
the "multiplication table")

Switch to studying left shelves. Example found by Richard Laver (set theorist

in Boulder)
An=91,2,3,..., N =223 (integers mod N) Note:O is whitten as N modN.

them There is a unique left shelf on An satisfying at 1 =a+1. for all
a +An

Eg.n =2, N=4,A =31,2,3,43 =integess mod4
2 4D2 =4D(1D1) =(4D1) D (4D1) =1D1 =2

4 3 4 4D3
=4D(2D1) =(4x2)x(4D1) =241 =3

C 4 4
4D4 =4D(3D1 =(4D3)4(4D1) =3x1 =4**
3D2 =3D(1D1) =(3D1) D(3D1) =4D4 =4

Fact: The left-distributive 2x2 =2D(ID) =(2DD D(2D1)
=3x 3 =4

law holds inall cases 2x3 =2D(2D1) =(2x2) D(2D1) =4X3 =3

although we haven't 2D4 =2D(3D1) =(2D3)D(2D1) =3D3=4

checked this here. 1D2 =1D(1D1) =(D1) D(ID1) =2D2 =4

1D 3 =1D (2D1) =(D2) D(1D1) =4D 2
=

2



↑ E
-

IN- -01

disture As his as theperiod ofthefirstrow ofthetable ->0

The conjecture holds if them exists a laver cardinal (a certain kind of large
cardinal 3. No one knows how to prove

this in EIC.

We have an inverse system ofleft shelves
... - A -A-A

-A- As
4



Let X be any
set and letM= 3 injective maps X- x 3.

[1.to.1)

Then M is a
monoid under composition. (A group if X is finitel.

Let it be a set ofsentences over some language, and letM,NEA. (models of A
i.e. L-structures

eg. A:axious for a ring which satisfy all
L: +,-, X the sentences inA).

2,$ F A and I is a smodel of(there is a 1-to-1map 2t& preserving
the operations ButI is not elemental embeddedin D bee

there are sentences of over L

such that IF d, QF v4 (or the other way around, e.g.

eg. 0:(5x)(xy) (r(y+y =x)).
We say 2: M->N (M,NEC) is

a tentangdemandingvalent "to sectiveand for every
sentence 4, 1(M) CN

submodel For all b, 1/M)Fo iff NF%.

Aportsofe. largerflake
curre



There are many embeddings of1
in itself. Pick such an embedding 1:DTK

D, 1(K) < K are models of the field axioms A. IK) is an elementary submodel

of D i.e. 1:4- D is anelementary embedding i.e. D is an elementing
extension of 1)K).

Noteispreserves P, 1.1, X,
- butnot thetopology.

(inaccessible)
For models ofEFC(1: e) a laver cardial is a cardinal such that

taryembedding 1: V, -> Y, which is not surjective.theY, admitsan elemen

Thisisliftshelf under the following:

I) f.g:x-> X are injective them fig:x-- X is

(7xg)(x): 3799):
7(x):E7*

eg. 7: /0,0) ->(0,0), x+ x+1 fD 8

2
·

9- #



why is isa leftshelf?

(2fxg(b (fTh))(x) f(x)*
check three cases=(fp(gxh))(x)

If x =fg(X) then x=fg(y) so
⑭

(gph)(x) =

,V,is an elementaryembedding butnotsurjective.
Itgenerates alfshel) muder"i". This is theFree shelf on one generator I,

I, =51, y, [IDC) IC, 14(ID),
... 3 These combinations ofa under is

are distinct except when required by theleft shelf axiom e.g. (1D()D(,D1)
=(D (D)

I, is a countably infinite left shelf;moreover 4,m An



LetX be an infinite set. A fitter ouxis a collection is ofsubsets ofXsuch that

ci) $41, X = I I Sets in it are large subsets of X.7

iii) E) A-7 and A.BCXthen B- 5.

(iii) If A, A'15 the AratE,
5.

By Zorn's lemma, every in filter extends to an ultrafiltes 4?on X which is a filter

satisfying
(iv) For all ACX, either A or X-A is in 91.

99 gives a two-valued finitely additive probability measure on X,

to get a nonprincipal ultrafitter onX, we start with the Frechet fitter consisting of all
ofinite subsets ofX (complements of finite subsets ofX) and take 42I a maximal
filter containing 5. It is nonprincipal:acontains no finite sets.

We take a tobe a nonprincipal utrafilter on w =90,1,2,3,...3 and consider thering
RW =3290,9,,92,93,...):ai-R3 withcoordinatewise operations. R" is a commutative

ring with identity, nota field;e.g. (1,0,1,0,...710,0,"7 = (0,0,0,0,...) =0 +R.

No identify two sequences a 190,9,,9n,...), b:(bo,b., be, ...) is they agree almost everywhere
withrespect toit i.e. ifSize:ai:bil = 4.
In the case a=71,0,1,0,1,0, ...) we have ai =0 whenever it 9,3,5,7,...3; bi=0 whenever it 90,2,4,6,

b =C0,9, 0,0, .) 28Sisincethena10"and"""""",,??;"



Identify two sequences in R" whenever they agree almost everywhere wirit. M.
A

Then we get a quotient ring R"/=*A demoted IRin the handout.

This is thefield of constandard reals or hyperreals.
*

has the same firstorder theory I am ordered field and it's a real closed field,

e.g. every poly f(x) **R (x)
oaddegroof in *R). In fact we have an elementary

embedding ofI in #ts. The main difference between1 and * is that is has no

infinite or infinitesmal elements but it does.

The Archimedean propertysays thatit as them ata
=aa</ forsome n.

(a) (9>0 -> /94931 V atatas Vaxa+a+a>IV...))
This propertyis notexpressible in the first order theory of fields.
R satisfies this property. "I does not.

Eg. 5 = (1, 2, 5, 1,5,...) -R", up
to equivalence mod II, defines an infinite mal

in *R.
na:(n,,,,...)ER", n5<1 since this holds for all but the first a terms of

the sequence.
5 =1,2,3,4,5,... (ER" defines an infinite elementof*M.



Every structureMhas a enlargement *M. first-order

ts' There If Mo, M,Me.... FA (statementsover a language over) then theultrapodut

(t Mi3 /9 FA.

Eg. A:axious for fields, Mit
for all i tMi: Elmo, m,m,...):mit Mi.

Eg. L:language ofa single binary relation'
A:axious for ordinary graphs of degrees

Amodel ofA, TS, is an ordinary graph ofdegrees.
For each itw, take TiFAeg. T =o, I,-, i, 5s,...
T =5 x 5 xEx...:ECVo, V, V2, Vs, ...):vi- 5:3

& anonprincipal ultrafiltes on w i.e. v,is a vertexin Ti.

Now (5i)/1 is thesetof equivclasses ofsequences v =(Vo,, v2, ...).

If v,winti)/is them new if vimw;for almostall; i.e. Sitw:vin- 91.

This graph has degrees. If It
has order for some them i is a graph of

ordes =n. Why? LetP be the first-order statement thati has atmost a vertices,

Since Ti FG, i= = (nTi)/y F0.



You can take the "A" operation applied toany standard mathematical object, e.g.
R * *, SEAS (*) =3 if (S1 <0).

If fiR- A, then7: *R-* "enlarges"7. How do we define *f() for
(extends)

x=R*?< is represented by 190, 9,92, ...) tRY

*f(x) is represented by (1990), f(a.), f(an),...) -> I"The equivclass of this

sequence
is well-defined in *M.

Suppose :M->R is differentiable. Classically,
fi(a) =lim Etf(a).

1-0

The nonstandard approach:
f'(a) =sttztf(s) where I is an infinitesmalI

st: bounded hyperreals to reals. "st()"
is thestandard part ofa, i.e. the

unique
real closest to a linfinitely closel

HRhas the order topology which is notmatrizable and notseparable.

Integrals can be similarly definedin a nonstandard way:if I is Lebesque



where N is an
integrable them

"fitidt=st/t f(a+i(x) *x] unbounded hyper natural

It number

Hypernaturalnumbers *N =(h)/91
N =51,2,3,... 3. Sequences (no, m, m, ...) -NW mod4 gives *N.

NC*

I looks like:W. I...
I dcopies of"

1) =MR1 =(R) =2Y

2"* *N1= (NY) =Y'=2"

Given x-> (0,1) (real) consider the sequence is:(FT, Rai, ir3al,1491,...)
=Nato dc in 10,1) then

as Vatde.



An example of an elementary statement about 1 thathas a (possibly) shorten
moustandard proof than standard proof:

Ten(Senski) If a,,..,,9p, b are positive reals then

19(n, ..., -N: 9
++.. +

=b3/ 0.

This statement was proved using elementary methods by Sierpinski.
A late nonstandard proof by Ross:

Suppose S = 9 In, ..., n) -Nk:2+...tak=b3 is infinite. Then

As contains a solution (n.,...," where notall nit (some ni's are unbounded;
say n, ..., ,N*-N; Mrte,...," = N; 1 rn. There

at... + 5 =b... an Contradiction.
Ur T S

-

positive ERR (bounded)I infinitesmal



We have first-order axious for group theory.
Axious for the class of abolian groups:

· axious of group theory
· (x)(fy)(xy =yx)

Axious for class ofnonabelian groups
· axioms for group theory
· (7x)(5y) (xy=yx).

there is no first-ordss axiomatization of theclass ofcyclic groups.
cyclic:(5g)(*x) (Int(x =g")

Notpermissible in firstorder group theory.
If there were a list ofaxious A for the theoryofcyclic groups then

(I(it)andisa group
of order 24, not cyclic

(x ,Y(aY (, X...)/ge is not cyclic.



Ashorter argumentthatthe class ofcyclic groups is not firstorder axiomatizable:

Suppose A is a collection ofstatements in first orders
group theory such that

GFA itG is a cyclic groups. There exists an infinite model (additive R)

sobytowardtravenheim.Shethearm, thereismodelsofarbitratethe
Let it be a set ofstatements in graph theory such that

T ES its T is a graph of degree 2.
Note:this equivalent tosaying I is a disjoint mich

ofcycles

↳ I ... ...
...

ore

LetA be the axious for field theory (the language 0, 1, +, -,).
-

#, ISA is the field ofprive order pi i,*algebraic closure ofIp-

is countably infiniteLet
F =(,*p)/9=(****, ofcharacteristic (stlog)
Since #pFA.

(Ipis a field)
I is a field. What is it? F K.



I =(5Ep3/91 is a field ofcharacteristic zero.

Itis algebraically closed. (Each it,is alg.closed as we described

in the firstmonth.)
The theory of algo closed fields ofcharacteristic

zero is uncountably categorical.
IF1 =2" (look back four pages) so FE D.

Now consider F =(MP)/9 = (# *i3 x *, *1,xA,x...)/93.

This is a field. "It's a subfield ofD lap to isomorphism)
It has characteristic zero. IFI =2"* FED since I has irreducible

poly's ofevery degree. (For every us, thereexists
a poly. f(x+F(x)

of degree which is irreducible. Butso what, I also has this property.)

R(X) has irred, poly's ofdegrees but theyall give wise to 4:

R has a unique extension field ofdegrees. A has infinitely many extension fields

of degree 2. It has a unique extension of each degree as I
It is an uncomtable field of clear. O having a unique extension field

ofeach degree n>



Take a subset SEIN* =9 (no, 1, 2, ...):n,N3. two players, Alice and Bob,
take turns picking elements ofIN =91,2,3,4,...3 starting with Him, resulting in a day
x =190, bo, a, b, G, b.,...) -> NY. If xes, then A wins. Ifit NYS, B wins.

Eg. S is thesetofeventually constant sequences.
This has a winning strategy for Bob.

Eg.S is thesetofeventually periodic sequences.
Bob's advantage.

Eg. S is any
countable collection ofsequences, i.e. SCIN*, ISI: No.

Bob has a winningstrategy. Emmerate 5 =95,,S2,3,... 3. On turn j. Bob chooses any
ne N which differs from the 2j-indexed term in Sj.

Eg. S is the setof sequences having no 's,,4,,5,9' as subsequence. Alice has a winning

strategy.
Eg. S is the set of'universal' sequences in

No (sequences containing every finite sequence
ofnatural numbers appears as a consecutive subsequence). Bob can play 2, 2,2, ... towin.


