

Group Theory: an example of a first-order axion	réfic system
An internal proof in group theory Theorem If G is a (multiplicative) group of expon	
Theorem If G is a (multiplicative) group of expon	ent 2, then G is abselian.
(G has exponent n if g"=1 for all g ∈ G.)	
	multiplying on the left by "a" and on the right by "b"
in general and the F. Kanana Kanana ay an a Nanana πFrancia απΩ and a sin a sin a sin a	
asives $a_{ababb} = a_{1b}$, i.e. $ba = a_{b}$. \Box Axioms of Group Theory : $(a_{ij})_{i \in J} = \mu(x_{ij})$	Special symbols for first order logic: 3, V, pareilles, 1, V,
$(D: (\forall x) ((x + 1 - x)) \land (1 + x = x))$	2° , 3° , 3
4550C: (4x)(4y)(4z) ((x+y)+2 = x+ (y+2))	Sumbols for functions: * Roty means m(x,y)
$INV: (\forall x) (\exists y) ((x + y = 1) \land (y + x = 1))$	Symbols for construits: 1, Symbols for functions: *, Roty means $M(x,y)$ Symbols for relations: =
	of order n), S. (symmetric group of hegree n), } (the set consisting of our three axions of group theory) GROUPS) mp; S. # ABEL; S. # ABEL-GPS. th an interpretation of all the symbols for constant,

How do we reweite our intermal proo	f (above) as a formal proof in first order logic?
Z = GROUPS V SEXP2? where E	$x + 2 := (\forall x)(x + x = 1)$
ABEI is a thomas in the theory	of groups of exponent 2, i.e. ZH ABEL.
A shears is a concern of charce	50 F in which every step follows from previous steps by
A Theorem is a signification sups	a statement in E. or an axiom of first order logic,
	Et is or a rule of inference.
	f (above) as a formal proof in first order logic? XP2: (∀X)(X*X = 1) of groups of exponent 2, i.e. ≥ + ABEL. ≥+ □ in which every step follows from previous steps by E+ □ a statement in ≥, or an axiom of first order logic, ≥+ □ or a rule of inference. E+ □ this is a formal (symbolic) proof!
An outline of a formal proof: 2+	$EXP2$ since $EXP2 \in C$
	$(F \times D_2 \rightarrow (H_a)(Q \times Q = 1))$
· · · · · · · · · · · · · · · · · · ·	(Va) (a* a = 1) Modus Porans (RI) p.86
· · · · · · · · · · · · · · · · · · ·	
24	$(\sqrt{b})(b+b=1)$
	$(\forall a)(\forall b)((a*b)*(a*b)=1)$
·	
→ S	(4a)(4b) $((a*(a*b)*(a*b)) = a*1)$
· · · · · · · · · · · · · · · · · · ·	$-(\forall a)(\forall b)(a * b = b * q)$