

Los-Vauglit Test assures us that Th (ACFo) is complete. This uses: the theory has no finite models; and the theory is 2⁴⁰ categoing L t Jerzy Loś, Robert Vaught (1954) C-wordes Logic Algebre (Cauchy) complete & No -> (model) complete & continuous y compact & No convergent yes compact & compact & compact & compact & closed F Let L be a language and let X be the collection of all L-structures. For any set of sentences Σ over L, let $K_{\Sigma} = sd$ of of L-structures satisfying all the sentences in Σ Then X is a top. space with K_{Σ} as its basic closed set. This space is (topologically) compact. $\Im K_{0}$: θ sentence over L \Im are basic closed set. Eq. K= $\mathbb{Q}[\delta z] = \{a + b + \overline{z} : a, b \in \mathbb{Q}\}$ has two field automorphisms, $\iota(a + b + \overline{z}) = a - b + \overline{z}$. T $(a + b + \overline{z}) = a - b + \overline{z}$. E= 1 = 2 C 2 - 2 C 2 - 5

C here unconstably many adomorphisms but only two of them are continuous. Where do we get this?
$\mathbb{C} \subset \mathbb{C}[x] \subset \mathbb{C}(x) = K \subset K$
The ring C[x] has automorphisms f(x) ~ F(x+a)
$K = \mathbb{C}(x) = \begin{cases} \frac{f(x)}{g(x)} & : f(x), g(x) \in \mathbb{C}[x] \end{cases}$
is a field extension of C and it's not alg. closed.
K[t] has irreducible polys eg. t-x e K[t]
\overline{K} is an alg. closed field of char. O , $ \overline{K} = 2^{R_0} = \mathbb{C} $
But these is only one alg. closed field of there. O for each uncomtable cardinality (the theory of ACF, is uncomitably categorical) so $K \cong \mathbb{C}$.
R has lots of automorphisms i.e. (has lots of automorphisms.
· · · · · · · · · · · · · · · · · · ·
R has only one automorphism, the identify 1(a) = a.
R has only one automorphism, the identify $r(a) = a$. Axians for R?
R has only one automorphism, the identify 1(a) = a.

(∀aX ¥b)(∀c) ((a <b)→ (c="" <="" [(a+c="" b+c)="" ~="">o)→ (ac < bc)])</b)→>
R is the migne ordered field which is (Cauchy)-complete and having Q as a dense subfield.
But we cannot state "Cauchy complete" in first order theory of fields.
How much of the theory of R can be captured in first order logic ?
Ordered field axions
• $(\forall a)(a \neq 0 \rightarrow a^2 > 0)$
• $(\forall a)(a > 0 \rightarrow (\exists b)(b=a))$
 Every polynomial f(x) ∈ ℝ[x] of odd degree has a root. Eq. for degree \$
$(\forall 4)(\forall 6)(\exists x)(x^{3}+qx^{2}+bx+c=0)$
The first order theory of R is complete.
However the theory is not K-categorical for any cardinality K. (No models for K finite; more than one for each infinite K.)
Eq. for $K = K_0 : \overline{Q} \cap R$
For K= 2 ⁴⁰ : IR; hypermals *IR
Any model of RCF is a real closed field. Every real closed field is elementarily equivalent to R (i.e. has the same first order theory). R and C are elementarily equivalent.
· · · · · · · · · · · · · · · · · · ·

Emil Artin (1927) proved the Hilbert 17th problem using mathematical logic.
Hilbert's 17th Problem such that \$70 (i.e. \$(x1,, Xn) 70 for all X1,, X E R).
Let $f(x_1,, x_n) \in \mathbb{R}[x_1,, x_n]$, Is it necessary that $f = s_1^2 + + s_1^2$ for some
Hillbert's 17th Problem Let $f(x_1,, x_n) \in \mathbb{R}[x_1,, x_n]$, Is it necessary then $f = s_1^2 + + s_k^2$ for some rational functions $s_i(x_1,, x_n) \in \mathbb{R}(x_1,, x_n)$? (Prister: $k \leq 2^n$)
Motekins example: n=2. T(x,y)=1-3xy+xy'+xy' + xy:
Squares of poly's but
$f(x,y) = \left[\frac{x^2y(x^2+y^2-2)}{x^2+y^2}\right]^2 + \left[\frac{xy^2(x^2+y^2-2)}{x^2+y^2}\right]^2 + \left[\frac{xy}{x^2+y^2}\right]^2 + \left[\frac{x^2-y^2}{x^2+y^2}\right]^2 + \left[\frac{x^2-y^2}{x^2+y^2}\right]^2$
Note: $1 + x^{\frac{4}{y^2}} + \frac{x^{\frac{2}{y^4}}}{2} \ge (1 + x^{\frac{4}{y^2}}, x^{\frac{2}{y^4}})^{\frac{1}{3}} = x^{\frac{2}{y^2}}$ by the aritmetic-geometric mean inequality
So f(x,y) ≥ 0 Sor all riy.
If $f = s_1^2 + \cdots + s_k^2$ for some $s_i(x, y) \in \mathbb{R}[x, y]$ then deg $s_i \leq 3$, so $s_i(x, y)$ may have terms
1, x, y, x, x9, y, pr, x3, yg, y
$S_{i}(x,y) = a_{i} + b_{i}x + c_{i}y + d_{i}xy + e_{i}x^{2} + f_{i}y^{2}$
2^2
In R, the positive elements are squares. $\tilde{i} = 2di^{\pi}g^{\pi}$ (Not true in Q)
Consequence: Aut R = 1. If \$ E Aut R i.e. \$: R > R is bijective and \$(a+b) = \$(a) + \$(b) for, all
Consequence: $ Aut R = 1$. If $\phi \in Aut R$ i.e. $\phi: R \rightarrow R$ is bijective and $\phi(a+b) = \phi(a) + \phi(b)$ for all then $\phi(a) = a$ for all $e \in R$. Why? $\phi(a^2) = \phi(a)^2 + a + b = \phi(a) + b =$

$S_0 \phi(a) < \phi(b) \iff \alpha < b$.	$ \phi(o) = 0 $ $ \phi(i) = 1 $
$\leftarrow 7 \phi(b) - \phi(a) > 0$	$\phi(z) = \phi(H) = \phi(1) + \phi(z) = 1 + 1 = 2$
	$\varphi(u) = u$
<>> 6-q>0	
$\Leftrightarrow a < b$.	
Compare: (D[JZ] is also an ordered of	ield but it has nontrivial automorphism \$(a+6+2)= a-6+2
For all $a, b \in \mathbb{O}$. Hilbert's 17th could is true for $n=1$:	every fixe Rix) with fixe a for all x satisfies
$f(x) = q(x)^2 + h(x)^2$ for some $q(x)$, $h(x)$	every $f(x) \in [R[x]]$ with $f(x) \ge 0$ for all x satisfies $\in R[x]$. Why? Factor
$f(x) = \lambda \prod (x - r_i)^2 \cdot \prod (x - s_i)^2 + t_i^2$) ashere $\lambda \geq 0$, $\lambda = a^2$
$(a^{2}+b^{2})(c^{2}+d^{2}) = (ac-bd)^{2} + (ad+bc)^{2}$	
Proof of Hilbert's 17th Roblem (Artin; S	erre)
let $f = f(x_1, \dots, x_m) \in \mathbb{R}[x_1, \dots, x_m]$. Suppose	e f is not a sum of squares of rational functions; we must
show F(a,, an) < 0 For some a,,	$\boldsymbol{a}_{i} \in \mathbb{R}$, and the second s
T= Science of squares of notional funct	notions in xr, xr. with real coefficients.
$T = \begin{cases} s_{11}s_{12} + \dots + s_{k}^{k} \\ s_{11}s_{12} + \dots + s_{k}^{k} \end{cases}$ of rational functional functional function T .	+T GT, TTGT, a ET for all a EF.

T defines a <u>preorder</u> on F , namely for $g,h \in F$, we say $g \le h$ iff $h \cdot g \in T$. " \le " is transitive but it's a partial order in general.	•
"<" is transitive but it's a partial order in general.	•
It's an order $\mathcal{A} = \mathcal{T} \cup (-\mathcal{T}) = \mathcal{F}$ and $\mathcal{T} \cap (-\mathcal{T}) = \{0\}$.	•
$(-T) = \{-g : g \in T\}$	•
We are assuming fET.	
We are assuming $f \notin I$. Among all preorders containing T but not containing f, choose a maximal preorder P using Zorn's lemma. Let $\{P_{\alpha} : \alpha \in A\}$ be a collection of preorders on F with $P_{\alpha} \ge T$, $f \notin P_{\alpha}$. (i.e. for every $\alpha, \beta \in A$, either $P_{\alpha} \le P_{\beta}$ or $P_{\beta} \le P_{\alpha}$) ($\{P_{\alpha}\}$ is a chain) Then $P = \bigvee P_{\alpha}$ is an upper bound for the chain i.e. $P_{\alpha} \le P$	•
let ?P. : ac A? be a collection of preorders on F with Por2T, f& Pa.	
(i.e. for every a, B = A, either Pa = Pa or Pa = Pa)	
({Par is a chain) Then P= UPa is an upper bound for the chain i.e. Pa SP	•
for all de A. Then P is a preorder (D, DCP DDCP 2, P) and P2T. f&P	
for all de A. Then P is a preorder (P+P S P, PP S P, a' E P) and P2T, f & P. By Zorn's Lomma there exists a maximal preorder P as above.	•
(i) Show $-1 \notin P$. If $-1 \in P$ then $f = \left(\frac{1+f^2}{2} + c_1\right) \left(\frac{1-f^2}{2} \in P$, a contradiction.	•
(ii) Show $-f \in P$. Suppose $-f \notin P$ and consider $\tilde{P} = P - Pf = \{a - bf : a, b \in P\}$ which is a preorder.	•
$\tilde{P} + \tilde{P} = \{(a, -b, f) + (a_2 - b_2 f) = (a, +a_2) - (b_1 + b_2)f : a_1, b_1 \in P\} \leq \tilde{P}$	•
$\tilde{P}\tilde{P}$: $(a,-b,f)(a,-b,f)$ \tilde{P} \tilde{P}	•
$= (a_{i}a_{z} + f \cdot b_{i}b_{z}) - (a_{i}b_{z} + a_{z}b_{i})f \in \beta$ $= (a_{i}a_{z} + f \cdot b_{i}b_{z}) - (a_{i}b_{z} + a_{z}b_{i})f \in \beta$ $= f \in \beta$	
T By maximality of P, feb EP	
$f = a - bf$, some $a, b \in P$. (1+6) $f = a \rightarrow f = \frac{a}{1+b} = (1+b)a \cdot \frac{1}{(4+b)}a$	

ciir.>	Given ge Assume	F, sl	ions ge	e Por	-ge	P	с							
	Assume	9∉ P	; sh	ion g	€ P.	WLO	6 g≠0	•						
	Consider geP.	Ĩ P =	P+ Pa	As	s in	cii) Â	s is a	preorder ,	₽́2	Ρ,	Ρ̈́>Ρ	รเก	ce gŧ	P, 1
	AGP	Bu	maxin	ality	of P	, we	must be	we ff f	\$0	£=	a+ ha	a 50	me ab	EP.
					~ ~ ~			A				J .•		
	- bg=	a-f	\Rightarrow	~g =		6.(0	$a-f>\cdot(f)$)		• • •				
· · · · · · · · · · · ·	Pn(-P)	= \$0	₹	 	- 4 +0	e e	P -qeP	> then		• • •	• • •			
					່ປີເ			· · · · · · · · · · · · · · · · · · ·						
		-(- 9	· (-g).	a) e	· K / ·	Control	ng to		• • • •	• • •	• • •			
				·J ·										
_								_						
· · (F ·≤)	is an	andorad	field	· · vit	re	ash	e 👄 b	$-q \in P$		• • •				
(F, ≤)	is an	ordered	field	i vit	vere	a≤b	$\Leftrightarrow b$	-9 E P.		• • •	• • •	• • •		
(F, ≤)	is an It's an	ordered	field on of	(17, 12) (17, 12)	ure ≤)	a≤b	<⇒ b. .eF	-9 E P.		· · · · · · · · · · · · · · · · · · ·	Red		4	
B. 4	It's an he Tarski	Octensi Tomis	on of	(R; : inciplo	≤)) ;;	- (r	x.) EF	tisties a	stateme	at in	first	order	theory	
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				
By the	It's an he Tarski ured fields	octensi Toanst . He	on of er Pri	(R; : inciple nc is	≤`) ' ;f	(T ₁ ,	rn) eF € R ⁿ re	tisties a alizing -	1043 SIM	men				

Indiscernibles ... coming soon Here we consider only points, lives and their Axions for projective plane geometry: incidences. Objects: points and lines $(\forall \pi) (P(\pi) \leftrightarrow (\neg L(\pi)))$ Relations: P(.), L(.), I(.,.) $(\forall \pi)(\forall y)(\exists G_{x}q) \rightarrow (\aleph_{x}) \leftarrow L(y))$ Axions: (i) Aay two distinct points are on a unique line. $(\forall x)(\forall y)(P(x) \land P(y) \land \neg(x=y) \rightarrow (\exists z)(I(x,z) \land I(y \land z) \land (\forall w)(I(x,w) \land I(y,w))$ (ii) ~ Aug two distinct lines meet in a unique point. ~ (w=z))) (iii) nondegeneracy axion to the points with no three of them collinear. which models are unique up to isomerphism Models? There are some orders (sizes) for Infinite planes. Finite projective planes: n²+n+1 points (lines 7 lines 7 lines 3 points/line 3 lines/point n+1 lines / points / line are many proj planes n+1 lines / point of order K (with n = order of the plane cardinality K).

Does there exist an infinite has a unique conntable	projective	plane	whick	13 4	ro-cat	segorice	el i	<u>e</u> .	its	theor	y		
has a unique conntable	model ?							X					
· · · · · · · · · · · · · · · · · · ·							· · · ·						
	 . .	 	no two	001-	ts an	e e e	at n	vost	line				
Ceneralized Quadranglos	(i) P		my two	Pis	vot o	nl	then	the	ere	îs q			
		5	X	migu		on J	2	sined	to	P			
(m) nondegeneracy. E3	≥3	*			• • •	· · · · · · · · · · · · · · · · · · ·	in frank						
	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>					1							
In every case / }t+1													
In every case	5+1												
Can 3<00, t=00 ?				• • •	• • •								
If s=2 then t = 4	(earsy).											• •	
If $s=3$ then $t=9$ If $s=4$ then $t\leq 16$	(4 pag	jes) i i	• • • •	• • •	• • •	• • •	• • •		• • •				
$tf s=4$ then $t \leq 16$	s (Che	ilin)		• • •		· · ·	• • •				• •		
· · · · · · · · · · · · · · · · · · ·		• • • •	• • • •	• • •	• • •	· · ·	· · ·	• •					
							••••	• •					
											• •		• •

(et A be a set of first order sentences over a language L (i.e. e theory) and let M = A (a model of A). A set of indiscernibles S ≤ M such that for every distinct s,..., su∈ S and t,..., treS and every propositional function $\phi(x_1,...,x_k)$, $\phi(s_1,...,s_k)$ AP $\phi(t_1,...,t_k)$. Eq. let A be the axions of field theory, $C \neq A$ let S be any algebraically independent subset of C. This means that for all similar $f \in S$ and nonself $F(x_1, \dots, x_k) \in \mathbb{Q}[x_1, \dots, x_k]$ then $f(s_1, \dots, s_k) \neq 0$. eg. {IT}, {e}. There are alg. ind. subset of C of uncomtable size! Is {T, e} alg. indep. ? Any set S C which is alg. indeg. is a set of indiscernibles. Let it he the axions of graph theory. Consider a graph F = A that books like the the axions of graph theory. Consider a graph F = A that books like where a, ..., as are infinite cardinals Picke sie Ku, ..., sie

Proj. Plane <> bipartite graph of diameter 3 and shortest cycles have

let I be a language and I a set of sentences over I. Let ME A be an L-structure. A subset SCM is a set of indiscernibles if for every k71 and $a_1, \dots, a_k \in S$ distinct, also any $\phi(\kappa_1, \dots, \pi_n)$ formula over I, $b_1, \dots, b_k \in S$ distinct, $M \in \mathcal{A}$ be an L-structure. $M \notin \phi(a_1, \dots, a_k) \in \mathcal{B}(b, \dots, b)$ $\mathsf{M} \models \phi(a_1, \dots, a_k) \Leftrightarrow \phi(b_1, \dots, b_k)$ Eq. L = (·, +, 0, 1) = language of rings with identify 1 A = axioms of field theory M = C Scany algebraically independent set (i.e. for a, ..., a ES distinct, $f(x_1, \dots, x_k) \in Q[x_1, \dots, x_k]$ nonzero poleg., $f(q_1, \dots, q_k) \neq 0$.) Let $s, t \in S$. Eq. $\phi(x, y)$: $x^2 + xy + y^2 = O$. For all s,teS (s+t), \$(s,t) is false. $\psi(xy): (\forall u) (\exists v) (ux + vy = 1).$ y(s,t) is fine for all stt in S Dense Linear Order Without Endpoints f = (<), $A = a_{x}ions$ of DLO without endpoints, $M^{=}(Q, <)$ model ordering on Q. $M \neq A$ (the unique contable model up to isomorphism). This structure has no indiscerning sets S with |S| > 1. If $s \neq c S$ with $s \neq t$ then (s, t), (t, s) are discernible eq. $s < t \rightarrow (t < s)$

A set of order indiscernibles in M is an ordered set S = { sz : t e Q } Such that whenever t, < ... < tk in Q and \$ (X,..., XL) is a prop. formula over L we have $M \models (\phi(s_{t_1}, \dots, s_t) \notin \phi(s_{u_1}, \dots, s_{u_k}))$. Now $\mathcal{L} = (\langle \rangle), M = (Q, \langle \rangle), S = Q.$ S is a set of order indiscernibles, Theorem let I be a collection of sentences over a language L. If A bas an infinite model M= A, then A los an infinite under with a set of 52 order indiscernibles S ⊆ M, S= {s₁ : t ∈ Q}. (Here we have chosen S having order type (R, <) but you can choose any total order you want and get models of cA with sets of order indiscernifices of the desired order type.) 2 9 9 Remark: The Upward lowenheim Skolen Theorem says: then it also has models of every cardinality > 1011. has an infinite model M

eg. $N = 31,2,3,,5,$ $N_0 = 70,1,2,5,,5$ in a bijection $N \rightarrow N_0$. $ N \leq N_0 = Q = Z = Q ' = B_0 (n=1,2,3,)$ countedly infinite; $ R > H_0$. $ N = N_0 = Q = Z = Q ' = B_0 (n=1,2,3,)$ countedly infinite; $ R > H_0$. $Why?$ $N \rightarrow R$, $x \mapsto \pi$ is an injection so $ N \leq R $. Cantor shored there is no bijection so $ N < R $. More generally, if S is any set them $ S < P(S) $ where S = power set of $S = $ fall subsets of S]. $ R = P(N) $. $0, 1, 2, 3,, Son, w, w_2, w_3, w_7,, w_0, w_{en},$ Since $ R > H_0$, we have $ R \geq H_1$. $(H (Continuum Hypothesis): R = H_1, i.e. there is no set A with N < A < R ^2(H : R \geq H_2 i.e. there expicts a set B witth N < B < R .$	$\begin{array}{llllllllllllllllllllllllllllllllllll$
$\begin{split} & N \to R, x \mapsto x \text{is an injection so} (N) \leq (R). (autor should there is no bijection so (N) \leq (R). More generally, if S is any sot then (S) \leq (P(S)) where \\ & (S) = power set of S = (all subsets of S), \\ & (R) = (P(N)). (P, 1, 2, 3, \dots, (S), (W), $	eg. $N = \{1, 2, 3,, 5, N_0 - \} O, (1, 2, 3,)$ in a bijection $N \longrightarrow N_0$. $ N \le N_0 $. But $ N = N_0 $ since $x \to x - 1$ is a bijection $N \longrightarrow N_0$.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	$ \mathbf{N} = \mathbf{N}_0 = \mathbf{Q} = \mathbf{Z} = \mathbf{Q}^* = \mathbf{B}_0 (n = 12,3) \text{countedby infinite}; \mathbf{R} > \mathbf{H}_0, \text{why}?$ $ \mathbf{N} \rightarrow \mathbf{R}_1, \mathbf{X} \rightarrow \mathbf{X} \text{is an injection so } \mathbf{N} \leq \mathbf{R} . \text{Cantor should there is no bijection}$ $ \mathbf{N}_1 \leq \mathbf{R} . \text{Cantor should there is no bijection}$
Sizes (cardiadities) of sets: $V_1 V_2 S_1 \cdots S_0$, $S_{11} S_{21} S_3 S_4, \cdots, S_{100} S_{000000000000000000000000000000000000$	$ \mathbf{R} = \mathcal{P}(\mathbf{N}) $, $\mathcal{P} _{2} \otimes \mathcal{Q}_{1} \otimes \mathcal{Q}_{2} \otimes \mathcal{Q}_$
(If (Continueum typothesis): $ K ^2 = \gamma_1$, (c. and (n) and	Sizes (cardinalities) of sets: (11,2,3,, 8, 81, 82, 83, 84,, 8, 84,, 8, 84,, 8, 84,, 8, 84,
	(If (Continuum Hypothesis): $ R = B_1$, i.e. where is no set in the conjecture "Conjecture" $CH : R \ge S_2$ i.e. there exists a set B with $ N < B < R $.

By ZFC, every set Scan be will ordered. There is an order relation "I" on S such that. . if add and bdc then a dc · if ask and best than a=6. (a \$ k means a 16 or a=6) • Every nonempty subset of S has a add but afb least element. If ASS, A#O then there exists a EA with add the for all xEA. In other words, there is no infinite decreasing sequence a, Dar Das Dag D... in A. x shoots at positions $A_x \subset R$, $|A_x| \leq K_0$ The Axion of Symmetry AS: x **∉** A_x Charles V AS: There exist x=y in R such that x & Ay, y & Ax. (Neither of x, y hits the other.) AS is very easily believeble. AS is equivalent to 7CH

Proof of CH implies 7AS: Assuming CH, IRI = S, so well order (R, A) of type w,
Proof of CH implies $\neg AS$: Assuming CH, $ \mathbb{R} = S$, so well order $(\mathbb{R}, \triangleleft)$ of type ω_i . For every $x \in \mathbb{R}$, define $A_x = \{y \in \mathbb{R} : y \triangleleft x\}$. $x \in \mathbb{R}$ says $x \triangleleft \omega_i$ so x is a control ordinal.
$\gamma \in \chi$ $x \in \omega$, ordenal.
$S_0 A_x \leq S_0$
re Ay (> x Jy & Since N749, one of these holds. This contradicts AS.
$x \in x \in A_x \iff y \triangleleft x \land z \land$
Proof of TCH-7 AS: Assuming there exists BCR with So < (B) < (R) say
181= fr IRI 2 St and let Im A, be any assignment of comtable subsets of R
Proof of -CH-7 AS: Assuming there exists BCR with $4_0 < (B) < (R)$, say $ B = 4$, $ R \ge 4_2$, and let $x - A_x$ be any assignment of countable subsets of R to the real numbers $x \in R$.
$B_1 = \bigcup_{x \in B} A_x = \{all points hit from B^2, (B_1) \leq S_1$.
$[\mathcal{P}^*] \ge \mathcal{N}$
Since $ B^* < R $ we can pick $x \in R$ $x \notin B^*$. We want to pick
$y \in \mathbb{B}^{\pm}$, $y \notin A_x$. Since $ A_x = S_0 < (\mathbb{B}^{\pm})$, such y exists. Also $x \notin A_y$ since points $y \in \mathbb{B}^{\pm}$ can only hit other points in \mathbb{B}^{\pm} .
Also x & Ay since points y & Bt can only hit other points in B.
Thus AS holds.

$AS = AS_1$	troduced AS. But t	A CR I	P. orten in P
As_ says: only there exist -	n any assignment {x,y} three distinct x,y, z eR	such that none	Ax.g ≤ Sho of them are dust by the
	J J		· ·
AS2 is equivalent AS3	to $ R \ge \Re_3$ $ R \ge \Re_4$. .	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·		. .	· · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · · ·			

Theorem (Cherlin) Let Q be a generalized quadrangle with k points on every line, $k \in [3, q, 5]$. Then Q is finite. (Actually known previously for k = 3, 4.) language: I(x, y) binary relation "x is i-right with y" i.e. "y or y x P(x), L(y) many relations. Proof Suppose the theory of GQ's with k points per line has an infinite model. Then it has an infinite model with a set $S = \{l_t : t \in Q\}$ of order indiscernible lines. lo lo li 2 2 2 2 2 2 2 WLDG l, 123 5- 8 $\frac{1}{123^{\circ}k} = \frac{1}{123^{\circ}k} = \frac{1}$

By orden - indiscersibility	wheneve o <s< th=""><th><t, por<="" th=""><th>-C. 1. 1. 187.</th><th>le is join</th><th>ed to f</th><th>סייש דוי</th><th>) म् ्र</th><th>€ : </th><th></th></t,></th></s<>	<t, por<="" th=""><th>-C. 1. 1. 187.</th><th>le is join</th><th>ed to f</th><th>סייש דוי</th><th>) म् ्र</th><th>€ : </th><th></th></t,>	-C. 1. 1. 187.	le is join	ed to f	סייש דוי) म् ्र	€ : 	
Re-index:	el_		• • • •				· · ·		
	$\frac{1}{2}$ \mathcal{L}_{1} \mathcal{L}_{1} \mathcal{L}_{1} \mathcal{L}_{1} \mathcal{L}_{1} \mathcal{L}_{1}						• • •		
· · · · · · · · · · · · · · · · · · ·	$\frac{1}{2} \frac{l_1}{l_2}$			· · · · · ·					
Suppose o(i)=2.	(wlog)					· · · ·	· · ·	· · · · ·	
For each $t > 0$ $(t \in Q)$	let my be the	he line joinin	g point	1 on l-t	with	point 2	on		
This gives from {	R: teri a no	ens get of	lives Em.	: te	120{	. m.	n m.	= Ø	
· · · · · · · · · · · · · · · · · · ·			Mat	5		+	ا عر	line in	
o	for all t=t' again a collection	and the	collection	{m _t : t	€Q,	t>03	ं में ((thes is	5
12 k	for all t=t' again a collection re poplece the	and the a of order original	collection indiscer	{m _t : t with s.	∈ ℚ ,	t>03		(ines is	;
12 k	for all t=t' again a collection re poplece the	and the a of order original	collection indiscer	{m _t : t with s.	∈ ℚ ,	t>03		(ènes is	;
12 k	for all $t \neq t'$ again a collection we replace the the new 5 $\sigma(t) = 2$, $\sigma(2)$	and the of order original is a dera D=1.	collation i-discer Sl _t S _t ugencent	<pre>{m_t: t</pre>	∈ ℚ ,	t>0}		(ines 1)	;
12 k	for all $t \neq t'$ again a collection we replace the the new 5 $\sigma(t) = 2$, $\sigma(2)$ TF $k = 3$ we	and the of order original is a dera D=1.	collation i-discer ilt it ugeneent contradict	<pre>{m_t : t nilles. with fm satisfigion</pre>	€ ℚ , t	t>0}	.	(ines is	;
12 k	for all $t \neq t'$ again a collection we replace the the new 5 $\sigma(t) = 2$, $\sigma(2)$ TF $k = 3$ we	and the of order original is a dera)=1. have a	collation i-discer ilt it ugeneent contradict	<pre>{m_t : t nilles. with fm satisfigion</pre>	€ ℚ , t	t>0}	.	(ines is	5

Set Theory ZFC axions for first order set theory. See Cameron; Borderds Richard Borcherds YouTuber -> Zermelo. Fraenkel (#9 vikeos) IF Shas n elements Avoid Russel's Paradox ! then P(S) has 2" elements N= \$?? Standing with Vo = { B}, or recursively V = P(Vx) $\nabla_{i_1} = -\nabla_{i_2} \cup \nabla_{i_1} \cup \nabla_{i_2} \cup \cdots$ $V_{\omega+1} = v P(V_{\omega})$ (P(P((0)))= {0, 101, 103 }, 10, 10111 Note = P(Note) $\nabla_2 + (f(0)) = \{0, \{0\}\}$ 8(0) = {ø{ $V_{\omega,2} = V_{\omega+\omega} = V_{\omega} \cup V_{\omega} \cup V_{\omega+1} \cup V_{\omega+2}$ 0 = 5 3 Keep going The Von Neumann Universe of Sets